Affine and formal abelian group schemes on $p$-polar rings
DOI:
https://doi.org/10.7146/math.scand.a-129704Abstract
We show that the functor of $p$-typical co-Witt vectors on commutative algebras over a perfect field $k$ of characteristic $p$ is defined on, and in fact only depends on, a weaker structure than that of a $k$-algebra. We call this structure a $p$-polar $k$-algebra. By extension, the functors of points for any $p$-adic affine commutative group scheme and for any formal group are defined on, and only depend on, $p$-polar structures. In terms of abelian Hopf algebras, we show that a cofree cocommutative Hopf algebra can be defined on any $p$-polar $k$-algebra $P$, and it agrees with the cofree commutative Hopf algebra on a commutative $k$-algebra $A$ if $P$ is the $p$-polar algebra underlying $A$; a dual result holds for free commutative Hopf algebras on finite $k$-coalgebras.
References
Bauer, T. and Carlson, M., Tensor products of affine and formal abelian groups, Doc. Math. 24 (2019), 2525–2582. https://doi.org/10.1177/1081286518768039
Borger, J., Witt vectors, lambda-rings, and arithmetic jet spaces, Lecture notes and exercises, available at https://maths-people.anu.edu.au/ borger/classes/copenhagen-2016/, 2016.
Cartier, P., Modules associés à un groupe formel commutatif. Courbes typiques, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A129–A132.
Demazure, M., Lectures on $p$-divisible groups, Lecture Notes in Mathematics, vol. 302, Springer-Verlag, Berlin, 1986, Reprint of the 1972 original.
Demazure, M. and Gabriel, P., Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970, Avec un appendice Corps de classes local par Michiel Hazewinkel.
Fontaine, J.-M., Groupes $p$-divisibles sur les corps locaux, Astérisque, No. 47-48. Société Mathématique de France, Paris, 1977.
Hazewinkel, M., Witt vectors. I, Handbook of algebra. Vol. 6, pp. 319–472. Elsevier/North-Holland, Amsterdam, 2009. https://doi.org/10.1016/S1570-7954(08)00207-6
Hesselholt, L., Lecture notes on Witt vectors, preprint at http://web.math.ku.dk/~larsh/papers/s03/wittsurvey.pdf, 2008.
Ravenel, D. C., Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press Inc., Orlando, FL, 1986.
Serre, J.-P., Corps locaux, Deuxième édition, Publications de l'Université de Nancago, No. VIII. Hermann, Paris, 1968.
Takeuchi, M., Free Hopf algebras generated by coalgebras, J. Math. Soc. Japan 23 (1971), 561–582. https://doi.org/10.2969/jmsj/02340561
Takeuchi, M., Tangent coalgebras and hyperalgebras. I, Jpn. J. Math. 42 (1974), 1–143. https://doi.org/10.4099/jjm1924.42.0_1
Witt, E., Zyklische Körper und Algebren der Charakteristik $p$ vom Grad $p^n$. Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik $p$, J. Reine Angew. Math. 176 (1937), 126–140. https://doi.org/10.1515/crll.1937.176.126