Intermediate Jacobians and the slice filtration
DOI:
https://doi.org/10.7146/math.scand.a-132174Abstract
For every $n$-dimensional smooth projective variety $X$ over ℂ, the motive $M(X)$ is expected to admit a Chow-Künneth decomposition $M_0(X)\oplus \cdots \oplus M_{2n}(X)$. Inspired by the slice filtration of $M(X)$ we propose the definitions of $M_2(X)$ and $M_{2n-2}(X)$. In our construction we use intermediate Jacobians.
References
Arapura, D., Motivation for Hodge cycles, Adv. Math. 207 (2006), no. 2, 762–781. https://doi.org/10.1016/j.aim.2006.01.005
Ayoub, J., The $n$-motivic $t$-structures for $n=0$, $1$ and $2$, Adv. Math. 226 (2011), no. 1, 111–138. https://doi.org/10.1016/j.aim.2010.06.011
Grothendieck, A., Standard conjectures on algebraic cycles, in Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), pp. 193–199, Oxford Univ. Press, London, 1969.
Huber, A., Slice filtration on motives and the Hodge conjecture (with an appendix by J. Ayoub), Math. Nachr. 281 (2008), no. 12, 1764–1776. https://doi.org/10.1002/mana.200510712
Huber, A. and Kahn, B., The slice filtration and mixed Tate motives, Compos. Math. 142 (2006), no. 4, 907–936. https://doi.org/10.1112/S0010437X06002107
Jannsen, U., Motivic sheaves and filtrations on Chow groups, in Motives (Seattle, WA, 1991), pp. 245–302, Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994.
Kahn, B., Murre, J. P., and Pedrini, C., On the transcendental part of the motive of a surface, in Algebraic cycles and motives. Vol. 2, pp. 143–202, London Math. Soc. Lecture Note Ser., vol. 344, Cambridge Univ. Press, Cambridge, 2007.
Lieberman, D., Intermediate Jacobians, in Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer-School in Math.), pp. 125–139, Wolters-Noordhoff, Groningen 1972.
Mazza, C., Voevodsky, V., and Weibel, C., Lecture notes on motivic cohomology, Clay Mathematics Monographs, vol. 2, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006.
Murre, J. P., On the motive of an algebraic surface, J. Reine Angew. Math. 409 (1990), 190–204. https://doi.org/10.1515/crll.1990.409.190
Orgogozo, F., Isomotifs de dimension inférieure ou égale à un, Manuscripta Math. 115 (2004), no. 3, 339–360. https://doi.org/10.1007/s00229-004-0495-4
Röndigs, O. and Østvær, P. A., Modules over motivic cohomology, Adv. Math. 219 (2008), no. 2, 689–727. https://doi.org/10.1016/j.aim.2008.05.013
Scholl, A. J., Classical motives, in Motives (Seattle, WA, 1991), pp. 163–187, Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994. https://doi.org/10.1090/pspum/055.1/1265529
Vial, C., Projectors on the intermediate algebraic Jacobians, New York J. Math. 19 (2013), 793–822. http://nyjm.albany.edu:8000/j/2013/19_793.html
Voevodsky, V., Open problems in the motivic stable homotopy theory. I, in Motives, polylogarithms and Hodge theory, Part I, (Irvine, CA, 1998), pp. 3–34, Int. Press Lect. Ser., vol. 3, Int. Press, Somerville, MA, 2002.
Voisin, C., Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge University Press, Cambridge, 2007.