The weak min-max property in Banach spaces
DOI:
https://doi.org/10.7146/math.scand.a-132214Abstract
In this paper, we investigate the relationship between the weak min-max property and the diameter uniformity of domains in Banach spaces with dimension at least 2. As an application, we show that diameter uniform domains are invariant under relatively quasimöbius mappings.
References
Gehring, F. W., and Hag, K., Remarks on uniform and quasiconformal extension domains, Complex Variables Theory Appl. 9 (1987), no. 2–3, 175–188. https://doi.org/10.1080/17476938708814261
Gehring, F. W., and Osgood, B. G., Uniform domains and the quasi-hyperbolic metric, J. Anal. Math. 36 (1979), 50–74. https://doi.org/10.1007/BF02798768
Gehring, F. W., and Palka, B. P., Quasiconformally homogeneous domains, J. Anal. Math. 30 (1976), 172–199. https://doi.org/10.1007/BF02786713
Huang, M., Li, Y., Vuorinen, M., and Wang, X., On quasimöbius maps in real Banach spaces, Israel J. Math. 198 (2013), no. 1, 467–486. https://doi.org/10.1007/s11856-013-0043-6
Jones, P. W., Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), no. 1, 41–66. https://doi.org/10.1512/iumj.1980.29.29005
Li, Y., Ponnusamy, S., and Zhou, Q., Sphericalization and flattening preserve uniform domains in non-locally compact metric spaces, J. Aust. Math. Soc. 112 (2022), no. 1, 68–89. https://doi.org/10.1017/S1446788719000582
Li, Y., Vuorinen, M., and Zhou, Q., Weakly quasisymmetric maps and uniform spaces, Comput. Methods Funct. Theory 18 (2018), no. 4, 689–715. https://doi.org/10.1007/s40315-018-0248-0
Li, Y., Vuorinen, M., and Zhou, Q., Apollonian metric, uniformity and Gromov hyperbolicity, Complex Var. Elliptic Equ. 65 (2020), no. 2, 215–228. https://doi.org/10.1080/17476933.2019.1579203
Martio, O., Definitions of uniform domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 197–205.
Martio, O., and Sarvas, J., Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1978), no. 1, 383–401. https://doi.org/10.5186/aasfm.1980.0517
Väisälä, J., Quasi-Möbius maps, J. Anal. Math. 44 (1984/85), 218–234. https://doi.org/10.1007/BF02790198
Väisälä, J., Uniform domains, Tohoku Math. J. (2) 40 (1988), no. 1, 101–118. https://doi.org/10.2748/tmj/1178228081
Väisälä, J., Free quasiconformality in Banach spaces. II, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 2, 255-310. https://doi.org/10.5186/aasfm.1991.1629
Väisälä, J., The free quasiworld. Freely quasiconformal and related maps in Banach spaces, Quasiconformal geometry and dynamics (Lublin 1996), 55–118, Banach Center Publ. 48, Polish Acad. Sci. Inst. Math., Warsaw, 1999.
Väisälä, J., Broken tubes in Hilbert spaces, Analysis (Munich) 24 (2004), no. 3, 227–238. https://doi.org/10.1524/anly.2004.24.14.227
Vuorinen, M., Capacity densities and angular limits of quasiregular mappings, Trans. Amer. Math. Soc. 263 (1981), no. 2, 343–354. https://doi.org/10.2307/1998354
Zhou, Q., and Rasila, A., Quasimöbius invariance of uniform domains, Studia Math. 261 (2021), no. 1, 1–24. https://doi.org/10.4064/sm191215-22-10