Remarks on Martio's conjecture

Authors

  • Ville Tengvall

DOI:

https://doi.org/10.7146/math.scand.a-132257

Abstract

We introduce a certain integrability condition for the reciprocal of the Jacobian determinant which guarantees the local homeomorphism property of quasiregular mappings with a small inner dilatation. This condition turns out to be sharp in the planar case. We also show that every branch point of a quasiregular mapping with a small inner dilatation is a Lebesgue point of the differential matrix of the mapping.

References

Astala, K., Area distortion of quasiconformal mappings, Acta Math. 173 (1994), no. 1, 37–60. https://doi.org/10.1007/BF02392568

Astala, K., Iwaniec, T., and Martin, G., Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series 48, Princeton University Press, Princeton, NJ, 2009.

Bojarski, B., and Iwaniec, T., Another approach to Liouville theorem, Math. Nachr. 107 (1982), 253–262. https://doi.org/10.1002/mana.19821070120

Bonk, M., and Heinonen, J., Smooth quasiregular mappings with branching, Publ. Math. Inst. Hautes Études Sci. 100 (2004), 153–170. https://doi.org/10.1007/s10240-004-0024-8

Elcrat, A., and Meyers, N., Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions, Duke Math. J. 42 (1975), 121–136. http://projecteuclid.org/euclid.dmj/1077310903

Gehring, F. W, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393. https://doi.org/10.2307/1993834

Gehring, F. W., The $L^p$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. https://doi.org/10.1007/BF02392268

Gehring, F. W., and Väisälä, J., Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. (2) 6 (1973), 504–512. https://doi.org/10.1112/jlms/s2-6.3.504

Gol'dšteu ın, V. M., The behavior of mappings with bounded distortion when the distortion coefficient is close to one, Sibirsk. Mat. Ž. 12 (1971), 1250–1258.

Gutlyanskiu ı, V. Ya., Martio, O., Ryazanov, V. I., and Vuorinen, M., On local injectivity and asymptotic linearity of quasiregular mappings, Studia Math. 128 (1998), no. 3, 243–271.

Gutlyanskiu ı, V. Ya., Martio, O., Ryazanov, V. I., and Vuorinen, M., Infinitesimal geometry of quasiregular mappings, Ann. Acad. Sci. Fenn. Math. 25 (2000), no. 1, 101–130.

Heinonen, J, The branch set of a quasiregular mapping, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 691–700, Higher Ed. Press, Beijing, 2002.

Heinonen, J., and Kilpeläinen, T., BLD-mappings in $W^2,2$ are locally invertible, Math. Ann., 318 (2000), no. 2, 391–396. https://doi.org/10.1007/s002080000129

Heinonen, J., Kilpeläinen, T., and Martio, O., Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993.

Hencl, S., Koskela, P., and Zhong, X., Mappings of finite distortion: reverse inequalities for the Jacobian, J. Geom. Anal. 17 (2007), no. 2, 253–273. https://doi.org/10.1007/BF02930724

Iwaniec, T., Stability property of Möbius mappings, Proc. Amer. Math. Soc. 100 (1987), no. 1, 61–69. https://doi.org/10.2307/2046120

Iwaniec, T., and Martin, G., Quasiregular mappings in even dimensions, Acta Math. 170 (1993), no. 1, 29–81. https://doi.org/10.1007/BF02392454

Iwaniec, T., and Martin, G., Geometric function theory and non-linear analysis, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2001.

Kaufman, R., Tyson, J. T., and Wu, J.-M., Smooth quasiregular maps with branching in $R ^n$, Publ. Math. Inst. Hautes Études Sci. 101 (2005), 209–241. https://doi.org/10.1007/s10240-005-0031-4

Kauranen, A., Luisto, R., and Tengvall, V., On BLD-mappings with small distortion, Complex Anal. Synerg. 7 (2021), no. 1, paper no. 5, 4pp. https://doi.org/10.1007/s40627-021-00067-y

Koskela, P., Onninen, J., and Rajala, K., Mappings of finite distortion: decay of the Jacobian, J. Geom. Anal. 22 (2012), no. 4, 964–976. https://doi.org/10.1007/s12220-011-9224-x

Krantz, S. G., and Parks, H. R., The implicit function theorem. History, theory, and applications, Reprint of the 2003 edition, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2013. https://doi.org/10.1007/978-1-4614-5981-1

Martio, O., A capacity inequality for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A. I. 474 (1970), 18pp.

Martio, O., On the integrability of the derivative of a quasiregular mapping, Math. Scand. 35 (1974), 43–48. https://doi.org/10.7146/math.scand.a-11534

Martio, O., Rickman, S., and Väisälä, J., Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A. I. 488 (1971), 31pp.

Martio, O., and Rickman, S., Measure properties of the branch set and its image of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A. I. 541 (1973), 16pp.

Martio, O., Ryazanov, V., and Vuorinen, M., BMO and injectivity of space quasiregular mappings, Math. Nachr. 205 (1999), 149–161. https://doi.org/10.1002/mana.3212050108

Martio, O., and Väisälä, J., Elliptic equations and maps of bounded length distortion, Math. Ann. 282 (1988), no. 3, 423–443. https://doi.org/10.1007/BF01460043

Onninen, J., and Rajala, K., Quasiregular mappings to generalized manifolds, J. Anal. Math. 109 (2009), 33–79. https://doi.org/10.1007/s11854-009-0028-x

Rajala, K., The local homeomorphism property of spatial quasiregular mappings with distortion close to one, Geom. Funct. Anal. 15 (2005), no. 5, 1100–1127. https://doi.org/10.1007/s00039-005-0530-y

Reshetnyak, Yu. G., Liouville's conformal mapping theorem under minimal regularity hypotheses, Sibirsk. Mat. Ž. 8 (1967), 835–840.

Reshetnyak, Yu. G., Space mappings with bounded distortion, Translations of Mathematical Monographs 73, American Mathematical Society, Providence, RI, 1989. https://doi.org/10.1090/mmono/073

Rickman, S., Sets with large local index of quasiregular mappings in dimension three, Ann. Acad. Sci. Fenn. Ser. A. I. 10 (1985), 493–498. https://doi.org/10.5186/aasfm.1985.1054

Rickman, S., Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 26. Springer-Verlag, Berlin, 1993. https://doi.org/10.1007/978-3-642-78201-5

Srebro, U., Topological properties of quasiregular mappings, Quasiconformal space mappings (edited by M. Vuorinen), 104–118, Lecture Notes in Math., 1508, Springer, Berlin, 1992. https://doi.org/10.1007/BFb0094241

Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series 43, Princeton University Press, Princeton, NJ, 1993.

Vuorinen, M., Conformal geometry and quasiregular mappings, Lecture Notes in Math. 1319. Springer-Verlag, Berlin, 1988. https://doi.org/10.1007/BFb0077904

Väisälä, J., Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math. 229. Springer-Verlag, Berlin-New York, 1971.

Published

2022-12-04

How to Cite

Tengvall, V. (2022). Remarks on Martio’s conjecture. MATHEMATICA SCANDINAVICA, 128(3). https://doi.org/10.7146/math.scand.a-132257

Issue

Section

Articles