Copies of $c_0(\tau)$ in Saphar tensor products
DOI:
https://doi.org/10.7146/math.scand.a-132282Abstract
Let $X, Y$ be Banach spaces, τ an infinite cardinal and $1 \leq p < \infty $. We extend a result by E. Oja by showing that if $X$ has a boundedly complete unconditional basis and either $X \widehat{\otimes}_{g_p} Y$ or $X \widehat{\otimes}_{\varepsilon _p} Y$ contains a complemented copy of $c_0(\tau )$, then $Y$ contains a complemented copy of $c_0(\tau )$. We show also that if α is a uniform crossnorm, $X \widehat{\otimes}_\alpha Y$ contains a (complemented) copy of $c_0(\tau )$ and the cofinality of τ is strictly greater than the density of $X$, then $Y$ also contains a (complemented) copy of $c_0(\tau )$. As an application, we obtain a result concerning complemented copies of $\ell _1(\tau )$ in $X \widehat{\otimes}_\alpha Y$.
References
Aharoni, R., and Saphar, P. D., On the reflexivity of the space $pi_p(E,F)$ of $p$-absolutely summing operators, $1leq p < +infty $, Bull. London Math. Soc. 25 (1993), no. 3, 362–368. https://doi.org/10.1112/blms/25.4.362
Bombal, F., Distinguished subsets in vector sequence spaces, Progress in functional analysis (Peñíscola, 1990), 293–306, North-Holland Math. Stud., 170, North-Holland, Amsterdam, 1992. https://doi.org/10.1016/S0304-0208(08)70327-X
Cembranos, P., $C(K,E)$ contains a complemented copy of $c_0$, Proc. Amer. Math. Soc. 91 (1984), no. 4, 556–558. https://doi.org/10.2307/2044800
Cembranos, P., and Mendoza, J., Banach spaces of vector-valued functions, Lecture Notes in Mathematics, 1676, Springer-Verlag Berlin 1997. https://doi.org/10.1007/BFb0096765
Cortes, V., Galego, E. M., and Samuel, C., When is $c_0(tau )$ complemented in tensor products of $ell _p(I)$?, Math. Nachr. 292 (2019), no. 5, 1089–1105. https://doi.org/10.1002/mana.201700348
Cortes, V., Galego, E. M., and Samuel, C., Complemented copies of $c_0(tau )$ in tensor products of $L_p[0,1]$, Pacific J. Math. 301 (2019), no. 1, 67–88. https://doi.org/10.2140/pjm.2019.301.67
Cortes, V., Galego, E. M., and Samuel, C., Copies of $c_0(tau )$ spaces in projective tensor products, Proc. Amer. Math. Soc. 148 (2020), no. 10, 4305–4318. https://doi.org/10.1090/proc/15064
Cortes, V., and Galego, E. M., When does $C_0(K,X)$ contain a complemented copy of $c_0(Gamma )$ iff $X$ does?, Bull. Sci. Math. 159 (2020) 102839. https://doi.org/10.1016/j.bulsci.2020.102839
Defant, A., and Floret, K., Tensor norms and operator ideals, North Holland Mathematics Studies 176, North-Holland Publishing Co., Amsterdam 1993.
Diestel, J., Jarchow, H., and Tonge, A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics 43, Cambridge University Press, Cambridge 1995. https://doi.org/10.1017/CBO9780511526138
Diestel, J., and Uhl Jr., J. J. Vector measures, Math. Surveys 15, American Mathematical Society 1977.
Emmanuele, G., On complemented copies of $c_0$ in $L^p_X, 1 leq p < infty $, Proc. Amer. Math. Soc. 104 (1988), no. 3, 785–786. https://doi.org/10.2307/2046792
Fabian, M., Habala, P., Hájek, P., Montesinos, V., and Zizler, V., Banach space theory: the basis for linear and nonlinear analysis, CMS Books in Mathematics, Springer, New York 2011. https://doi.org/10.1007/978-1-4419-7515-7
Freniche, F. J., Barrelledness of the space of vector valued and simple functions, Math. Ann. 267 (1984), no. 4, 479–486. https://doi.org/10.1007/BF01455966
Galego, E. M, and Hagler, J. N., Copies of $c_0(Gamma )$ in $C(K,X)$ spaces, Proc. Amer. Math. Soc. 140 (2012), no. 11, 3843–3852. https://doi.org/10.1090/S0002-9939-2012-11208-0
Grothendieck, A., Produits tensoriels topologiques et espaces nucl'eaires, Mem. Amer. Math. Soc. 16 (1955)
Lindenstrauss, J., and Tzafriri, L., Classical Banach spaces I, sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92. Springer-Verlag, Berlin-New York, 1977.
Oja, E., Sous-espaces complémentés isomorphes à $c_0$ dans les produits tensoriels de Saphar, Math. Scand. 68 (1991), no. 1, 46–52. https://doi.org/10.7146/math.scand.a-12344
Oja, E. Complemented subspaces that are isomorphic to $ell _p$ spaces in tensor products and operator spaces, (Russian) Sibirsk. Mat. Zh. 33 (1992), no. 5, 115–120, 223. Translation in Siberian Math. J. 33 (1992), no. 5, 850–855. https://doi.org/10.1007/BF00970993
Persson, A., On some properties of $p$-nuclear and $p$-integral operators, Studia Math. 33 (1969), 213–222. https://doi.org/10.4064/sm-33-2-213-222
Persson, A., and Pietsch, A., $p$-nuklear und $p$-integral Abbildungen in Banachraumen, Studia Math. 33 (1969), 19–62. https://doi.org/10.4064/sm-33-1-19-62
Rosenthal, H. P., On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13–36. https://doi.org/10.4064/sm-37-1-13-36
Rosenthal, H. P., On injective Banach spaces and the spaces $L_infty (mu )$ for finite measure µ, Acta Math. 124 (1970) 205–248. https://doi.org/10.1007/BF02394572
Ryan, R. A., Complemented copies of $c_0$ in spaces of compact operators, Proc. Roy. Irish Acad. Sect A 91 (1991), no. 2, 239–241.
Ryan, R. A., Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2002. https://doi.org/10.1007/978-1-4471-3903-4
Saab, E., and Saab, P., On complemented copies of $c_0$ in injective tensor products, Geometry of normed linear spaces (Urbana-Champaign, Ill., 1983), 131–135, Contemp. Math., 52, Amer. Math. Soc., Providence, RI, 1986. https://doi.org/10.1090/conm/052/840704
Saphar, P. D., Produits tensoriels d'espaces de Banach et classes d'applications linéaires, Studia Math. 38 (1970), 71–100. https://doi.org/10.4064/sm-38-1-71-100
Yost, D., Asplund spaces for beginners, Selected papers from the 21st Winter School on Abstract Analysis (Poděbrady, 1993). Acta Univ. Carolin. Math. Phys. 34 (1993), no. 2, 159–177.