Componentwise linear powers and the $x$-condition
DOI:
https://doi.org/10.7146/math.scand.a-133265Abstract
Let $S=K[x_1,\ldots,x_n]$ be the polynomial ring over a field and $A$ a standard graded $S$-algebra. In terms of the Gröbner basis of the defining ideal $J$ of $A$ we give a condition, called the $x$-condition, which implies that all graded components $A_k$ of $A$ have linear quotients and with additional assumptions are componentwise linear. A typical example of such an algebra is the Rees ring $\mathcal{R}(I)$ of a graded ideal or the symmetric algebra $\textrm{Sym}(M)$ of a module $M$. We apply our criterion to study certain symmetric algebras and the powers of vertex cover ideals of certain classes of graphs.
References
Aramova, A., Herzog, J., and Hibi, T., Finite lattices and lexicographic Gröbner bases, European J. Combin. 21 (2000), no. 4, 431–439. https://doi.org/10.1006/eujc.1999.0358
Aramova, A., Herzog, J., and Hibi, T., Ideals with stable Betti numbers, Adv. Math. 152 (2000), no. 1, 72–77. https://doi.org/10.1006/aima.1998.1888
Bruns, W., and Herzog, J., Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, 1993.
Buchsbaum, D. A., and Eisenbud, D., What makes a complex exact?, J. Algebra 25 (1973), 259–268. https://doi.org/10.1016/0021-8693(73)90044-6
Dirac, G. A., On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71–76. https://doi.org/10.1007/BF02992776
Erey, N., and Qureshi, A. A., Second powers of cover ideals of paths, arXiv:1912.08161.
Herzog, J., and Hibi, T., Componentwise linear ideals, Nagoya Math. J. 153 (1999), 141–153. https://doi.org/10.1017/S0027763000006930
Herzog, J., and Hibi, T., The depth of powers of an ideal, J. Algebra 291 (2005), no. 2, 534–550. https://doi.org/10.1016/j.jalgebra.2005.04.007
Herzog, J., and Hibi, T., Monomial Ideals, Graduate Texts in Mathematics, 260. Springer-Verlag London, Ltd., London, 2011. https://doi.org/10.1007/978-0-85729-106-6
Herzog, J., Hibi, T., Hreinsdottir, F., Kahle, T., and Rauh, J., Binomial edge ideals and conditional independence statements, Adv. Appl. Math. 45 (2010), no. 3, 317–333. https://doi.org/10.1016/j.aam.2010.01.003
Herzog, J., Hibi, T., and Ohsugi, H., Binomial ideals, Graduate Texts in Mathematics, 279. Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-95349-6
Herzog, J., Hibi, T., and Ohsugi, H., Powers of componentwise linear ideals, Combinatorial aspects of commutative algebra and algebraic geometry, 49–60. Abel Symp., 6, Springer, Berlin, 2011. https://doi.org/10.1007/978-3-642-19492-4_4
Herzog, J., Hibi, T., and Zheng, X., Monomial ideals whose powers have a linear resolution, Math. Scand. (2004), no. 1, 23–32. https://doi.org/10.7146/math.scand.a-14446
Herzog, J., and Iyengar, D., Koszul modules, J. Pure Appl. Algebra 201 (2005), no. 1–3, 154–188. https://doi.org/10.1016/j.jpaa.2004.12.037
Herzog, J., Reiner, V., and Welker, V., Componentwise linear ideals and Golod rings, Michigan Math. J. 46 (1999), no. 2, 211–223. https://doi.org/10.1307/mmj/1030132406
Hibi, T., Higashitani, A., Kimura, K., and O'Keefe, A. B., Algebraic study on Cameron–Walker graphs, J. Algebra 422 (2015), 257–269. https://doi.org/10.1016/j.jalgebra.2014.07.037
Mohammadi, F., Powers of the vertex cover ideal of a chordal graph, Comm. Algebra. 39 (2011), no. 10, 3753–3764. https://doi.org/10.1080/00927872.2010.512582
Mohammadi, F., Powers of the vertex cover ideals, Collect. Math. 65 (2014), no. 2, 169–181. https://doi.org/10.1007/s13348-013-0090-7
Ohtani, M., Graphs and ideals generated by some $2$-minors, Comm. Algebra. 39 (2011), no. 3, 905–917. https://doi.org/10.1080/00927870903527584
Römer, T., On minimal graded free resolutions, Dissertation, Universität Duisburg-Essen, 2001.
Sharifan, L., and Varbaro, M., Graded Betti numbers of ideals with linear quotients, Matematiche (Catania) 63 (2008), no. 2, 257–265.
Yanagawa, K., Alexander duality for Stanley–Reisner rings and squarefree $NN ^n$-graded modules, J. Algebra 225 (2000), no. 2, 630–645. https://doi.org/10.1006/jabr.1999.8130