Gap type results for spacelike submanifolds with parallel mean curvature vector
DOI:
https://doi.org/10.7146/math.scand.a-133368Abstract
We deal with $n$-dimensional spacelike submanifolds immersed with parallel mean curvature vector (which is supposed to be either spacelike or timelike) in a pseudo-Riemannian space form $\mathbb L_q^{n+p}(c)$ of index $1\leq q\leq p$ and constant sectional curvature $c\in \{-1,0,1\}$. Under suitable constraints on the traceless second fundamental form, we adapt the technique developed by Yang and Li (Math. Notes 100 (2016) 298–308) to prove that such a spacelike submanifold must be totally umbilical. For this, we apply a maximum principle for complete noncompact Riemannian manifolds having polynomial volume growth, recently established by Alías, Caminha and Nascimento (Ann. Mat. Pura Appl. 200 (2021) 1637–1650).
References
Aiyama, R., Compact spacelike $m$-submanifolds in a pseudo-Riemannian sphere $mathbb S_p^m+p(c)$, Tokyo J. Math. 18 (1995), no. 1, 81–90. https://doi.org/10.3836/tjm/1270043610
Akutagawa, K., On spacelike hypersurfaces with constant mean curvature in the de Sitter space, Math. Z. 196 (1987), no. 1, 13–19. https://doi.org/10.1007/BF01179263
Alías, L. J., and Romero, A., Integral formulas for compact spacelike $n$-submanifolds in de Sitter spaces. Applications to the parallel mean curvature vector case, Manuscripta Math. 87 (1995), no. 4, 405–416. https://doi.org/10.1007/BF02570483
Alías, L. J., Caminha, A., and do Nascimento, F. Y., A maximum principle related to volume growth and applications, Ann. Mat. Pura Appl. (4) 200 (2021), no. 4, 1637–1650. https://doi.org/10.1007/s10231-020-01051-9
de Barros, A. A., Brasil, A. C., Jr, and de Sousa, L. A. M., Jr, A maximum A new characterization of submanifolds with parallel mean curvature vector in $mathbb S^n+p$, Kodai Math. J. 27 (2004), no. 1, 45–56. https://doi.org/10.2996/kmj/1085143788
Brasil, A. C., Jr, Chaves, R. M. B., and Colares, A. G., Rigidity results for submanifolds with parallel mean curvature vector in de Sitter space, Glasg. Math. J. 48 (2006), no. 1, 1–10. https://doi.org/10.1017/S0017089505002818
Cheng, Q. M., Complete space-like submanifolds with parallel mean curvature vector, Math. Z. 206 (1991), no. 3, 333–339. https://doi.org/10.1007/BF02571347
Cheng, Q. M., Space-like surfaces in an anti-de Sitter space, Colloq. Math. 66 (1994), no. 2, 201–208. https://doi.org/10.4064/cm-66-2-201-208
Cheng, Q. M., and Ishikawa, S., Complete maximal spacelike submanifolds, Kodai Math. J. 20 (1997), no. 3, 208–217. https://doi.org/10.2996/kmj/1138043791
de Lima, H. F., dos Santos, F. R., and Velásquez, M. A. L., Complete spacelike submanifolds with parallel mean curvature vector in a semi-Euclidean space, Acta Math. Hungar. 150 (2016), no. 1, 217–227. https://doi.org/10.1007/s10474-016-0646-6
de Lima, H. F., dos Santos, F. R., and Velásquez, M. A. L., Characterizations of complete spacelike submanifolds in the $(n+p)$-dimensional anti-de Sitter space of index $q$, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111 (2017), no. 4, 921–930. https://doi.org/10.1007/s13398-016-0330-2
Ishihara, T., Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature, Michigan Math. J. 35 (1988), no. 3, 345–352. https://doi.org/10.1307/mmj/1029003815
Li, A. M., and Li, J. M., An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math. (Basel) 58 (1992), no. 6, 582–594. https://doi.org/10.1007/BF01193528
Mariano, M., On spacelike submanifolds with parallel mean curvature in an indefinite space form, Monatsh. Math. 166 (2012), no. 1, 107–120. https://doi.org/10.1007/s00605-012-0398-5
Omori, H., Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205–214. https://doi.org/10.2969/jmsj/01920205
Ramanathan, J., Complete spacelike hypersurfaces of constant mean curvature in de Sitter space, Indiana Univ. Math. J. 36 (1987), no. 2, 349–359. https://doi.org/10.1512/iumj.1987.36.36020
Santos, W., Submanifolds with parallel mean curvature vector in spheres, Tohoku Math. J. 46 (1994), no. 3, 403–415. https://doi.org/10.2748/tmj/1178225720
Yang, D., and Li, L., Spacelike submanifolds with parallel mean curvature vector in $S_q^n+p(1)$, Math. Notes 100 (2016), no. 1–2, 298–308. https://doi.org/10.1134/S0001434616070257
Yau, S. T., Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228. https://doi.org/10.1002/cpa.3160280203