Bounds for blow-up solutions of a semilinear pseudo-parabolic equation with a memory term and logarithmic nonlinearity in variable space
DOI:
https://doi.org/10.7146/math.scand.a-133418Abstract
In this article, we investigate the initial boundary value problem for a pseudo-parabolic equation under the influence of a linear memory term and a logarithmic nonlinear source term \[ u_{t}-\Delta u_{t}+\int _{0}^{t}g( t-s) \Delta u( x,s) \mathrm {d}s-\Delta u\]\[=|u|^{p(\cdot ) -2}u\ln (|u|), \]with a Dirichlet boundary condition.
Under appropriate assumptions about the relaxation function $g$, the initial data $u_{0}$ and the function exponent $p$, we not only set the lower bounds for the blow-up time of the solution when blow-up occurs, but also by assuming that the initial energy is negative, we give a new blow-up criterion and an upper bound for the blow-up time of the solution.
References
Abita, R., Blow-up phenomenon for a semilinear pseudo-parabolic equation involving variable source, Appl. Anal. (2021). https://doi.org/10.1080/00036811.2021.1947494
Abita, R., Bounds for blow-up time in a nonlinear generalized heat equation, Appl. Anal. 101 (2022), no. 6, 1871–-1879. https://doi.org/10.1080/00036811.2020.1789597
Acerbi, E., and Mingione, G., Regularity results for electrorheological fluids, the stationary case, C. R. Math. Acad. Sci. Paris 334 (2002), no. 9, 817–822. https://doi.org/10.1016/S1631-073X(02)02337-3
Acerbi, E., and Mingione, G., Regularity results for stationary eletrorheological fluids. Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213–259. https://doi.org/10.1007/s00205-002-0208-7
Al'shin, A. B., Korpusov, M. O., and Sveshnikov, A. G., Blow-up in nonlinear Sobolev type equations, De Gruyter Series in Nonlinear Analysis and Applications, 15. Walter de Gruyter & Co., Berlin, 2011. https://doi.org/10.1515/9783110255294
Antontsev, S., and Shmarev, S., Blow up of solutions to parabolic equations with nonstandard growth conditions. J. Comput. Appl. Math. 234 (2010), no. 9, 2633–2645. https://doi.org/10.1016/j.cam.2010.01.026
Barenblatt, G. I., Zheltov, I. P., and Kochina, I. N., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech. 24 (1960), no. 5, 1286–1303.
Barenblatt, G. I., Entov, V. M., and Ryzhik, V. M., Theory of fluid flows through natural rocks, Kluwer Academic Publishers, Dordrecht 1989.
Benjamin, T. B., Bona, J. L., and Mahony, J. J. Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A 272 (1972), no. 1220, 47–78. https://doi.org/10.1098/rsta.1972.0032
Cao, Y., and Liu, C., Initial boundary value problem for a mixed pseudo parabolic $p$-Laplacian type equation with logarithmic nonlinearity. Electron. J. Differential Equations 2018. Paper no. 116, 19pp.
Chen, H., Luo, P., and Liu, G., Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl. 422 (2015), no. 1, 84–98. https://doi.org/10.1016/j.jmaa.2014.08.030
Chen, H., and Tian, S., Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations. 258 (2015), no. 12, 4424–4442. https://doi.org/10.1016/j.jde.2015.01.038
Chen, P. J., and Gurtin, M. E., On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys. 19 (1968), no. 4, 614–627. https://doi.org/10.1007/BF01594969
Dai, P., Mu, C. L., and Xu, G. Y., Blow-up phenomena for a pseudo-parabolic equation with $p$-Laplacian and logarithmic nonlinearity terms, J. Math. Anal. Appl., 481 (2020), no. 1, 123439. https://doi.org/10.1016/j.jmaa.2019.123439
Diening, L., Harjulehto, P., Hästö, P., and Rŭžicka, M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017. Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8
Diening, L., and Rŭžicka, M., Calderon Zygmund operators on generalized Lebesgue spaces $L^p(cdot )(Omega )$ and problems related to fluid dynamics. J. Reine Angew. Math. 563 (2003), 197–220. https://doi.org/10.1515/crll.2003.081
Ding, H., and Zhou, J., Global existence and blow-up for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity, J. Math. Anal. Appl. 478 (2019), no. 2, 393–420. https://doi.org/10.1016/j.jmaa.2020.124164
Ding, H., and Zhou, J., Corrigendum to “Global existence and blow-up for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity” [J. Math. Anal. Appl. 478 (2019) 393–420] , J. Math. Anal. Appl. 489 (2020), no. 1, 124164. https://doi.org/10.1016/j.jmaa.2019.05.018
Ding, H., and Zhou, J., Global existence and blow-up for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity, II, Appl. Anal. 100 (2021), no. 12, 2641–2658. https://doi.org/10.1080/00036811.2019.1695784
Dzektser, E. S., A generalization of equations of motion of underground water with free surface, Dokl. Akad. Nauk SSSR. 202 (1972), no. 5, 1031–1033.
Fan, X. L., Shen, J. S., and Zhao, D., Sobolev embedding theorems for spaces $W^k,p(x)(Omega )$, J. Math. Anal. Appl. 263 (2001), no. 2, 749–760. https://doi.org/10.1006/jmaa.2001.7618
Ferreira, R., De Pablo, A., Pérez-LLanos, M., and Rossi, J. D., Critical exponents for a semilinear parabolic equation with variable reaction, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 5, 1027–1042. https://doi.org/10.1017/S0308210510000399
Halsey, T. C., Electrorheological fluids, Science 258 (1992), 761–766.
Hassanizadeh, S. M., and Gray, W. G., Thermodynamic basis of capillary pressure in porous media, Water Resources Research 29 (1993), no. 10, 3389–3405.
He, Y. J., Gao, H. H., and Wang, H., Blow-up and decay for a class of pseudo-parabolic $p$-Laplacian equation with logarithmic nonlinearity, Comput. Math. Appl. 75 (2018), no. 2, 459–469. https://doi.org/10.1016/j.camwa.2017.09.027
Ji, S., Yin, J., and Cao, Y., Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations. 261 (2016), no. 10, 5446–5464. https://doi.org/10.1016/j.jde.2016.08.017
Kbiri Alaoui, M., Nabil, T., and Altanji, M., On some new nonlinear diffusion model for the image filtering, Appl. Anal. 93 (2014), no. 2, 269–280. https://doi.org/10.1080/00036811.2013.769132
Korpusov, M. O., and Sveshnikov, A. G., Three-dimensional nonlinear evolution equations of pseudo-parabolic type in problems of mathematical physics, Zh. Vychisl. Mat. Mat. Fiz. 43 (2003), no. 12, 1835–1869.
Korpusov, M. O., and Sveshnikov, A. G., Three-dimensional nonlinear evolution equations of pseudo-parabolic type in problems of mathematical physics. II, Zh. Vychisl. Mat. Mat. Fiz. 44 (2004), no. 11, 2041–2048.
Le, C. N., and Le, X. T., Global solution and blow-up for a class of $p$-Laplacian evolution equations with logarithmic nonlinearity, Acta Appl. Math. 151 (2017), 149–169. https://doi.org/10.1007/s10440-017-0106-5
Liu, Y., Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions, Math. Comput. Modelling. 57 (2013), no. 3–4, 926–931. https://doi.org/10.1016/j.mcm.2012.10.002
Mikelić, A., A global existence result for the equations describing unsaturated flow in porous media with dynamic capillary pressure, J. Differential Equations. 248 (2010), no. 6, 1561–1577. https://doi.org/10.1016/j.jde.2009.11.022
Nhan, L. C., and Truong, L. X., Global solution and blow-up for a class of pseudo $p$-Laplacian evolution equations with logarithmic nonlinearity, Comput. Math. Appl. 73 (2017), no. 9, 2076–2091. https://doi.org/10.1016/j.camwa.2017.02.030
Nohel, J. A., Nonlinear Voltera equations for heat flow in materials with memory, Technical Summary Report #2081, Mathematics Research Center, University of Wisconsin-Madison 1980.
Padrón, V., Effect of aggregation on population recovery modeled by a forward backward pseudo-parabolic equation, Trans. Amer. Math. Soc. 356 (2004), no. 7, 2739–2756. https://doi.org/10.1090/S0002-9947-03-03340-3
Payne, L. E., Philippin, G. A., and Piro, S. V., Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, I, Z. Angew. Math. Phys. 761 (2010), no. 6, 999–1007. https://doi.org/10.1007/s00033-010-0071-6
Payne, L. E., Philippin, G. A., and Piro, S. V., Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, II, Nonlinear Anal. 73 (2010), no. 4, 971–978. https://doi.org/10.1016/j.na.2010.04.023
Payne, L. E., and Schaefer, P. W., Lower bounds for blow-up time in parabolic problems under Neumann conditions, Appl. Anal. 85 (2006), no. 10, 1301–1311. https://doi.org/10.1080/00036810600915730
Payne, L. E., and Schaefer, P. W., Lower bounds for blow-up time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl. 328 (2007), no. 2, 1196–1205. https://doi.org/10.1016/j.jmaa.2006.06.01
Rŭžicka, M., Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748. Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/BFb010402
Sobolev, S. L., On a new problem of mathematical physics, Izv. Akad. Nauk SSSR Ser. Mat. 18 (1954), 3–50.
Song, J. C., Lower bounds for the blow-up time in a non-local reactiondiffusion problem, Appl. Math. Lett. 24 (2011), no. 5, 793–796. https://doi.org/10.1016/j.aml.2010.12.042
Stanislav, A., and Sergey. S., Evolution PDEs with nonstandard growth conditions: existence, uniqueness, localization, blow-up, Atlantis Studies Differential Equations. 4 (2015), 1–417.