Symmetric approximation sequences, Beilinson-Green algebras and derived equivalences
DOI:
https://doi.org/10.7146/math.scand.a-133541Abstract
In this paper, we will consider a class of locally $\Phi$-Beilinson-Green algebras, where $\Phi$ is an infinite admissible set of the integers, and show that symmetric approximation sequences in $n$-exangulated categories give rise to derived equivalences between quotient algebras of locally $\Phi$-Beilinson-Green algebras in the principal diagonals modulo some factorizable ghost and coghost ideals by the locally finite tilting family. Then we get a class of derived equivalent algebras that have not been obtained by using previous techniques. From higher exact sequences, we obtain derived equivalences between subalgebras of endomorphism algebras by constructing tilting complexes, which generalizes Chen and Xi's result for exact sequences. From a given derived equivalence, we get derived equivalences between locally $\Phi$-Beilinson-Green algebras of semi-Gorenstein modules. Finally, from given graded derived equivalences of group graded algebras, we get derived equivalences between associated Beilinson-Green algebras of group graded algebras.
References
Asashiba, H., Derived equivalences and smash products, Proceedings of the 49th Symposium on Ring Theory and Representation Theory, 12–17, Symp. Ring Theory Represent. Theory Organ. Comm., Shimane, 2017.
Aihara, T., and Iyama, O., Silting mutation in triangulated categories, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 633–668. https://doi.org/10.1112/jlms/jdr055
Auslander, M., Reiten, I., and Smalø, S. O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511623608
bibitem Bei Beilinson, A. A., Coherent sheaves on $mathbb P^n$ and problems in linear algebra, Funct. Anal. Appl. 12 (1978), no. 3, 214–216.
Bennett-Tennenhaus, R., and Shah, A., Transport of structure in higher homological algebra, J. Algebra 574 (2021), 514–549. https://doi.org/10.1016/j.jalgebra.2021.01.019
Brundan, J., and Davidson, N., Categorical actions and crystals, Categorification and higher representation theory, 105–147, Contemp. Math., 683, Amer. Math. Soc., Providence, RI, 2017. https://doi.org/10.1090/conm/683
bibitem Buan2006 Buan, A. B., Marsh, R., Reineke, M., Reiten, I., and Todorov, G., Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572–618. https://doi.org/10.1016/j.aim.2005.06.003
Chen, H. X. and Xi, C. C., Dominant dimensions, derived equivalenences and tilting modules, Israel J. Math. 215 (2016), no. 1, 349–395. https://doi.org/10.1007/s11856-016-1327-4
Chen, Q. H., Derived equivalences of repetitive algebras, Adv. Math. (China) 37 (2008), no. 2, 189–196.
bibitem C Chen, X. W., Graded self-injective algebras “are” trivial extensions, J. Algebra 322 (2009), no. 7, 2601–2606. https://doi.org/10.1016/j.jalgebra.2009.05.034
Chen, Y. P., Derived equivalences in $n$-angulated categories, Algebr. Represent. Theory 16 (2013), no. 6, 1661–1684. https://doi.org/10.1007/s10468-012-9377-8
Chen, Y. P., Derived equivalences between subrings, Comm. Algebra 42 (2014), no. 9, 4055–4065. https://doi.org/10.1080/00927872.2013.804925
Chen, Y. P., and Hu, W., Approximations, ghosts and derived equivalences, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 2, 813–840. https://doi.org/10.1017/prm.2018.120
Dugas, A., A construction of derived equivalent pairs of symmetric algebras, Proc. Amer. Math Soc. 143 (2015), no. 6, 2281–2300. https://doi.org/10.1090/S0002-9939-2015-12655-X
Green, E. L., A criterion for relative global dimension zero with applications to graded rings, J. Algebra 34 (1975), 130–135. https://doi.org/10.1016/0021-8693(75)90199-4
Green, E. L., and Happel, D., Grading and derived categories, Algebr. Represent. Theory 14 (2011), no. 3, 497–513. https://doi.org/10.1007/s10468-009-9200-3
Happel, D., Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series 119, Cambridge University Press, Cambridge, 1988. https://doi.org/10.1017/CBO9780511629228
Happel, D., and Unger, L., Complements and the generalized Nakayama conjecture, Algebras and modules, II (Geiranger, 1996), 293–310, CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, 1998.
Herschend, M., Liu, Y., and Nakaoka, H., $n$-exangulated categories (I): Definitions and fundamental properties, J. Algebra 570 (2021), 531–586. https://doi.org/10.1016/j.jalgebra.2020.11.017
Hoshino, M., and Kato, Y., An elementary construction of tilting complexes, J. Pure Appl. Algebra 177 (2003), no. 2, 159–175. https://doi.org/10.1016/S0022-4049(02)00176-7
bibitem Hu2013a Hu, W., Koenig, S., and Xi, C. C., Derived equivalences from cohomological approximations and mutations of Φ-Yoneda algebras, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), 589–629. https://doi.org/10.1017/S030821051100045X
bibitem Hu2017 Hu, W., and Pan, S. Y., Stable functors of derived equivalences and Gorenstein projective modules, Math. Narchr. 290 (2017), no. 10, 1512–1530. https://doi.org/10.1002/mana.201600179
Hu, W., and Xi, C. C., $mathcal D$-split sequences and derived equivalences, Adv. Math. 227 (2011), no. 1, 292–318. https://doi.org/10.1016/j.aim.2011.01.023
Hu, W., and Xi, C. C., Derived equivalences for Φ-Auslander-Yoneda algebras, Trans. Amer. Math. Soc. 365 (2013), n0. 11, 5681–5711. https://doi.org/10.1090/S0002-9947-2013-05688-7
Hughes, D., and Waschbüsch, J., Trivial extensions of tilted algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 347–364. https://doi.org/10.1112/plms/s3-46.2.347
bibitem Iyama2014a Iyama, O. and Wemyss, M., Maximal modifications and Auslander-Reiten duality for non-isolated singularities, Invent. Math. 197 (2014), no. 3, 521–586. https://doi.org/10.1007/s00222-013-0491-y
Karoubi, M., Algèbres de Clifford et $K$-théorie, Ann. Sci. École Norm. Sup. (4) 1 (1968), 161–270. http://www.numdam.org/item?id=ASENS_1968_4_1_2_161_0
bibitem Keller1994 Keller, B., Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63–102. http://www.numdam.org/item?id=ASENS_1994_4_27_1_63_0
bibitem Keller2006Keller, B., On differential graded categories, International Congress of Mathematicians. Vol. II, 151–190, Eur. Math. Soc., Zürich, 2006.
Marcus, A., Tilting complexes for group graded algebras, J. Group Theory 6 (2003), no. 2, 175–193. https://doi.org/10.1515/jgth.2003.013
Marcus, A., and Pan, S. Y., Tilting complexes for group graded self-injective algebras, Tsukuba J. Math. 43 (2019), no. 2, 211–222. https://doi.org/10.21099/tkbjm/1585706452
Mori, I., B-construction and C-construction, Comm. Algebra 41 (2013), no. 6, 2071–2091. https://doi.org/10.1080/00927872.2011.653463
Nastasescu, C., and Van Oystaeyen, F., Methods of graded rings, Lecture Notes in Mathematics, 1836. Springer-Verlag, Berlin, 2004. https://doi.org/10.1007/b94904
Neeman, A., Triangulated categories. Annals of Mathematics Studies, 148. Princeton University Press, Princeton, NJ, 2001. https://doi.org/10.1515/9781400837212
Pan, S. Y., Derived equivalences for Cohen–Macaulay Auslander algebras, J. Pure Appl. Algebra 216 (2012), no. 2, 355–363. https://doi.org/10.1016/j.jpaa.2011.06.017
Pan, S. Y., Stable equivalences of Morita type for Φ-Beilinson-Green algebras, Math. Nachr. 294 (2021), no. 5, 977–996. https://doi.org/10.1002/mana.201900458
Pan, S. Y., and Peng, Z., A note on derived equivalences for Φ-Green algebras, Algebr. Represent. Theory 17 (2014), no. 6, 1707–1720. https://doi.org/10.1007/s10468-014-9467-x
Peng, Z., Derived equivalences between Φ-Green algebras and $n$-homological ring epimorphisms, Ph.D. thesis, 2013.
Rickard, J., Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436–456. https://doi.org/10.1112/jlms/s2-39.3.436
Ringel, C. M., and Zhang, P., Gorenstein-projective and semi-Gorenstein-projective modules, Algebra Number Theory 14 (2020), no. 1, 1–36. https://doi.org/10.2140/ant.2020.14.1
Rudakov, A. N., Exceptional collections, mutations and helices, Helices and vector bundles, 1–6, London Math. Soc. Lecture Note Ser., 148, Cambridge Univ. Press, Cambridge, 1990. https://doi.org/10.1017/CBO9780511721526.001
Van den Bergh, M., Non-commutative crepant resolutions, The legacy of Niels Henrik Abel, 749–770, Springer, Berlin, 2004.
Wisbauer, R., Foundations of module and ring theory, Algebra, Logic and Applications, 3. Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
Xi, C. C., On the finitistic dimension conjecture, I: related to representation-finite algebras, J. Pure Appl. Algebra 193 (2004), no. 1–3, 287–305. https://doi.org/10.1016/j.jpaa.2004.03.009