Generalized Bernstein functions
DOI:
https://doi.org/10.7146/math.scand.a-134298Abstract
A class of functions called generalized Bernstein functions is studied. The fundamental properties of this class are given and its relation to generalized Stieltjes functions via the Laplace transform is investigated. The subclass of generalized Thorin-Bernstein functions is characterized in different ways. Examples of generalized Bernstein functions include incomplete gamma functions, Lerch's transcendent and some hypergeometric functions.
References
Berg, C., Stieltjes–Pick–Bernstein–Schoenberg and their connection to complete monotonicity. In: Mateu, J., Porcu, E. (eds.) Positive Definite Functions. From Schoenberg to space-time challenges. Department of Mathematics, University Jaume I, Castellon, Spain, 2008.
Berg, C., and Forst, C., Potential theory on locally compact abelian groups, Ergebnisse der Mathematik und ihrer Grenzgebiete Band 87, Springer-Verlag, New York-Heidelberg„ 1975.
Berg, C., and Forst, C., A convolution equation relating the generalized Γ-convolutions and the Bondesson class, Scand. Actuar. J. (1982), no. 3–4, 171–175. https://doi.org/10.1080/03461238.1982.10405264
Berg, C., and Pedersen, H. L., A family of Horn-Bernstein functions, Experimental Mathematics (2021), 1–9. https://doi.org/10.1080/10586458.2021.1980460
Gradshteyn, I. S., and Ryzhik, I. M., Table of series and products, Seventh edition, Academic Press 2007.
van Haeringen, H., Completely monotonic and related functions, J. Math. Anal. Appl. 204 (1996), no. 2, 389–408. https://doi.org/10.1006/jmaa.1996.0443
NIST Digital Library of Mathematical Functions. Release 1.0.25 of 2019-12-15. (verb !http://dlmf.nist.gov/!). Olver, F. W. J., et al., eds.
Karp, D., and Prilepkina, E., Generalized Stieltjes functions and their exact order, J. Class. Anal. 1 (2012), no. 1, 53–74. https://doi.org/10.7153/jca-01-07
Koumandos, S., and Pedersen, H. L., Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler's gamma function, J. Math. Anal. Appl. 355 (2009), no. 1, 33–40. https://doi.org/10.1016/j.jmaa.2009.01.042
Koumandos, S., and Pedersen, H. L., On asymptotic expansions of generalized Stieltjes functions, Comput. Methods Funct. Theory 15 (2015), no. 1, 93–115. https://doi.org/10.1007/s40315-014-0094-7
Koumandos, S., and Pedersen, H. L., On generalized Stieltjes functions, Constr. Approx. 50 (2019), no. 1, 129–144. https://doi.org/10.1007/s00365-018-9440-8
Schilling, R. L., Song, R., and Vondracek, Z., Bernstein functions. Theory and applications, Second edition. De Gruyter Studies in Mathematics, 37. Walter de Gruyter & Co., Berlin, 2012. https://doi.org/10.1515/9783110269338
Schilling, R. L., Zum Pfadverhalten von Markovschen Prozessen, die mit Lévy-Prozessen vergleichbar sind, PhD-thesis, Universität Erlangen 1994.
Sokal, A. D., Real-variables characterization of generalized Stieltjes functions, Expo. Math. 28 (2010), no. 2, 179–185. https://doi.org/10.1016/j.exmath.2009.06.004