Lifts, transfers, and degrees of univariate maps
DOI:
https://doi.org/10.7146/math.scand.a-134457Abstract
One can compute the local $\mathbb{A}^1$-degree at points with separable residue field by base changing, working rationally, and post-composing with the field trace. We show that for endomorphisms of the affine line, one can compute the local $\mathbb{A}^1$-degree at points with inseparable residue field by taking a suitable lift of the polynomial and transferring its local degree. We also discuss the general set-up and strategy in terms of the six functor formalism. As an application, we show that trace forms of number fields are local $\mathbb{A}^1$-degrees.
References
Bachmann, T., and Wickelgren, K., Euler classes: Six-functors formalism, dualities, integrality and linear subspaces of complete intersections, Journal of the Institute of Mathematics of Jussieu (2021), First View, 1–66. https://doi.org/10.1017/S147474802100027X
Basu, S., Pollack, R., and Roy, M.-F., Algorithms in real algebraic geometry, second ed., Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag, Berlin, 2006.
Brazelton, T., Burklund, R., McKean, S., Montoro, M., and Opie, M., The trace of the local $A^1$-degree, Homology Homotopy Appl. 23 (2021), no. 1, 243–255. https://doi.org/10.4310/hha.2021.v23.n1.a1
Brazelton, T., McKean, S., and Pauli, S., a1-degree.sage, https://github.com/shmckean/A1-degree/, 2021.
Brazelton, T., McKean, S., and Pauli, S., Bézoutians and the $A^1$-degree, arXiv:2103.16614, 2021.
Calmès, B., and Fasel, J., Finite Chow–Witt correspondences, arXiv:1412.2989
Cazanave, C., Algebraic homotopy classes of rational functions, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 4, 511–534 (2013). https://doi.org/10.24033/asens.2172
Conner, P. E., and Perlis, R., A survey of trace forms of algebraic number fields, Series in Pure Mathematics, vol. 2, World Scientific Publishing Co., Singapore, 1984. https://doi.org/10.1142/0066
Déglise, F., Jin, F., and Khan, A. A., Fundamental classes in motivic homotopy theory, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 12, 3935–3993. https://doi.org/10.4171/jems/1094
Elmanto, E., Hoyois, M., Khan, A. A., Sosnilo, V., and Yakerson, M., Framed transfers and motivic fundamental classes, J. Topol. 13 (2020), no. 2, 460–500. https://doi.org/10.1112/topo.12134
Hoyois, M., A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula, Algebr. Geom. Topol. 14 (2014), no. 6, 3603–3658. https://doi.org/10.2140/agt.2014.14.3603
Hoyois, M., The localization theorem for framed motivic spaces, Compos. Math. 157 (2021), no. 1, 1–11. https://doi.org/10.1112/s0010437x20007575
Iohvidov, I. S., Hankel and Toeplitz matrices and forms, Birkhäuser, Boston, Mass., 1982.
Kass, J. L. and Wickelgren, K., The class of Eisenbud-Khimshiashvili-Levine is the local $A^1$-Brouwer degree, Duke Math. J. 168 (2019), no. 3, 429–469. https://doi.org/10.1215/00127094-2018-0046
Kass, J. L. and Wickelgren, K., A classical proof that the algebraic homotopy class of a rational function is the residue pairing, Linear Algebra Appl. 595 (2020), 157–181. https://doi.org/10.1016/j.laa.2019.12.041
Morel, F., $ A^1$-algebraic topology, International Congress of Mathematicians. Vol. II, 1035–1059, Eur. Math. Soc., Zürich, 2006.
Morel, F., $A^1$-algebraic topology over a field, Lecture Notes in Mathematics, vol. 2052, Springer, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-29514-0
Morel, F. and Voevodsky, V., $A^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. (1999), no. 90, 45–143. http://www.numdam.org/item?id=PMIHES_1999__90__45_0
Scheja, G., and Storch, U., Über Spurfunktionen bei vollständigen Durchschnitten., J. Reine Angew. Math. 278(279) (1975), 174–190.