Complexity and rigidity of Ulrich modules, and some applications
DOI:
https://doi.org/10.7146/math.scand.a-136499Abstract
We analyze whether Ulrich modules, not necessarily maximal CM (Cohen-Macaulay), can be used as test modules, which detect finite homological dimensions of modules. We prove that Ulrich modules over CM local rings have maximal complexity and curvature. Various new characterizations of local rings are provided in terms of Ulrich modules. We show that every Ulrich module of dimension $s$ over a local ring is $(s+1)$-Tor-rigid-test, but not $s$−Tor-rigid in general (where $s\ge 1$). Over a deformation of a CM local ring of minimal multiplicity, we also study Tor rigidity.
References
Auslander, M., Modules over unramified regular local rings, Illinois J. Math. 5 (1961), 631–647. http://projecteuclid.org/euclid.ijm/1255631585
Auslander, M., and Buchweitz, R.-O., The homological theory of maximal Cohen-Macaulay approximations, Mém. Soc. Math. France (N.S.) No. 38 (1989), 5–37.
Auslander, M., Ding, S., and Solberg, O., Liftings and weak liftings of modules, J. Algebra 156 (1993), no. 2, 273–317. https://doi.org/10.1006/jabr.1993.1076
Auslander, M., Reiten, I., On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc. 52 (1975), 69–74. https://doi.org/10.2307/2040102
Avramov, L. L., Modules with extremal resolutions, Math. Res. Lett. 3 (1996), no. 3, 319–328. https://doi.org/10.4310/MRL.1996.v3.n3.a3
Avramov, L. L., Infinite free resolutions, Six lectures on commutative algebra, (Bellaterra 1996), 1–118, Progr. Math. 166, Birkhäuser, Basel (1998).
Avramov, L. L., Gasharov, V. N., and Peeva, I. V., Complete intersection dimension, Inst. Hautes Études Sci. Publ. Math. No. 86 (1997), 67–114. http://www.numdam.org/item?id=PMIHES_1997__86__67_0
Avramov, L. L., Iyengar, S. B., Nasseh, S., and Sather-Wagstaff, S.ZK., Persistence of homology over commutative noetherian rings, J. Algebra 610 (2022), 463–490. https://doi.org/10.1016/j.jalgebra.2022.07.027
Brennan, J. B., Herzog, J., and Ulrich, B., Maximally generated Cohen-Macaulay modules, Math. Scand. 61 (1987), no. 2, 181–203. https://doi.org/10.7146/math.scand.a-12198
Bruns, W., and Herzog, J., Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993.
Celikbas, O., Dao, D., Takahashi, R., Modules that detect finite homological dimensions, Kyoto J. Math. 54 (2014), no. 2, 295–310. https://doi.org/10.1215/21562261-2642404
Celikbas, O., Goto, S., Takahashi, R., and Taniguchi, T., On the ideal case of a conjecture of Huneke and Wiegand, Proc. Edinb. Math. Soc. (2) 62 (2019), no. 3, 847–859. https://doi.org/10.1017/s0013091518000731
Christensen, L. W., Gorenstein dimensions, Lecture Notes in Mathematics, 1747. Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/BFb0103980
Christensen, L. W., Frankild, A., and Holm, H., On Gorenstein projective, injective and flat dimensions—a functorial description with applications, J. Algebra 302 (2006), no. 1, 231–279. https://doi.org/10.1016/j.jalgebra.2005.12.007
Corso, A., Huneke, C., Katz, D., and Vasconcelos, W. V., Integral closure of ideals and annihilators of homology, Commutative algebra, 33–48, Lect. Notes Pure Appl. Math., 244, Chapman & Hall/CRC, Boca Raton, FL, 2006. https://doi.org/10.1201/9781420028324.ch4
Dao, H., Li, J., and Miller, C., On the (non)rigidity of the Frobenius endomorphism over Gorenstein rings, Algebra Number Theory 4 (2010), no. 8, 1039–1053. https://doi.org/10.2140/ant.2010.4.1039
Dey, S., and Kobayashi, T., Vanishing of (co)homology of Burch and related modules, Illinois J. Math., to appear. arXiv:2201.01023
Foxby, H. B., Isomorphisms between complexes with applications to the homological theory of modules, Math. Scand. 40 (1977), no. 1, 5–19. https://doi.org/10.7146/math.scand.a-11671
Ghosh, D., Some criteria for regular and Gorenstein local rings via syzygy modules, J. Algebra Appl. 18 (2019), no. 5, 1950097, 15 pp. https://doi.org/10.1142/S021949881950097X
Ghosh, D., Gupta, A., and Puthenpurakal, T. J., Characterizations of regular local rings via syzygy modules of the residue field, J. Commut. Algebra 10 (2018), no. 3, 327–337. https://doi.org/10.1216/JCA-2018-10-3-327
Ghosh, D., and Puthenpurakal, T. J., Vanishing of (co)homology over deformations of Cohen-Macaulay local rings of minimal multiplicity, Glasg. Math. J. 61 (2019), no. 3, 705–725. https://doi.org/10.1017/s0017089518000459
Ghosh, D., and Takahashi, R., Auslander-Reiten conjecture and finite injective dimension of Hom, Kyoto J. Math., to appear. arXiv:2109.00692
Goto, S., Takahashi, R., and Taniguchi, N., Almost Gorenstein rings—towards a theory of higher dimension, J. Pure Appl. Algebra 219 (2015), no. 7, 2666–2712. https://doi.org/10.1016/j.jpaa.2014.09.022
Jorgensen, D. A., Complexity and Tor on a complete intersection, J. Algebra 211 (1999), no. 2, 578–598. https://doi.org/10.1006/jabr.1998.7743
Kobayashi, T. and Takahashi, R., Ulrich modules over Cohen-Macaulay local rings with minimal multiplicity, Q. J. Math. 70 (2019), no. 2, 487–507. https://doi.org/10.1093/qmath/hay055
Lichtenbaum, S., On the vanishing of Tor in regular local rings, Illinois J. Math. 10 (1966), 220–226. http://projecteuclid.org/euclid.ijm/1256055103
Martsinkovsky, A., A remarkable property of the (co) syzygy modules of the residue field of a nonregular local ring, J. Pure Appl. Algebra 110 (1996), no. 1, 9–13. https://doi.org/10.1016/0022-4049(95)00122-0
Matsumura, H., Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1986.
Roberts, P., Two applications of dualizing complexes over local rings, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 1, 103–106. http://www.numdam.org/item?id=ASENS_1976_4_9_1_103_0
Takahashi, R., Syzygy modules with semidualizing or G-projective summands, J. Algebra 295 (2006), no. 1, 179–194. https://doi.org/10.1016/j.jalgebra.2005.01.012
Ulrich, B., Gorenstein rings and modules with high numbers of generators, Math. Z. 188 (1984), no. 1, 23–32. https://doi.org/10.1007/BF01163869
Yoshida, K., Tensor products of perfect modules and maximal surjective Buchsbaum modules, J. Pure Appl. Algebra 123 (1998), no. 1–3, 313–326. https://doi.org/10.1016/S0022-4049(96)00088-6
Zargar, M. R., Celikbas, O., Gheibi, M., and Sadeghi, A., Homological dimensions of rigid modules, Kyoto J. Math. 58 (2018), no. 3, 639–669. https://doi.org/10.1215/21562261-2017-0033