Complexity and rigidity of Ulrich modules, and some applications

Authors

  • Souvik Dey
  • Dipankar Ghosh

DOI:

https://doi.org/10.7146/math.scand.a-136499

Abstract

We analyze whether Ulrich modules, not necessarily maximal CM (Cohen-Macaulay), can be used as test modules, which detect finite homological dimensions of modules. We prove that Ulrich modules over CM local rings have maximal complexity and curvature. Various new characterizations of local rings are provided in terms of Ulrich modules. We show that every Ulrich module of dimension $s$ over a local ring is $(s+1)$-Tor-rigid-test, but not $s$−Tor-rigid in general (where $s\ge 1$). Over a deformation of a CM local ring of minimal multiplicity, we also study Tor rigidity.

References

Auslander, M., Modules over unramified regular local rings, Illinois J. Math. 5 (1961), 631–647. http://projecteuclid.org/euclid.ijm/1255631585

Auslander, M., and Buchweitz, R.-O., The homological theory of maximal Cohen-Macaulay approximations, Mém. Soc. Math. France (N.S.) No. 38 (1989), 5–37.

Auslander, M., Ding, S., and Solberg, O., Liftings and weak liftings of modules, J. Algebra 156 (1993), no. 2, 273–317. https://doi.org/10.1006/jabr.1993.1076

Auslander, M., Reiten, I., On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc. 52 (1975), 69–74. https://doi.org/10.2307/2040102

Avramov, L. L., Modules with extremal resolutions, Math. Res. Lett. 3 (1996), no. 3, 319–328. https://doi.org/10.4310/MRL.1996.v3.n3.a3

Avramov, L. L., Infinite free resolutions, Six lectures on commutative algebra, (Bellaterra 1996), 1–118, Progr. Math. 166, Birkhäuser, Basel (1998).

Avramov, L. L., Gasharov, V. N., and Peeva, I. V., Complete intersection dimension, Inst. Hautes Études Sci. Publ. Math. No. 86 (1997), 67–114. http://www.numdam.org/item?id=PMIHES_1997__86__67_0

Avramov, L. L., Iyengar, S. B., Nasseh, S., and Sather-Wagstaff, S.ZK., Persistence of homology over commutative noetherian rings, J. Algebra 610 (2022), 463–490. https://doi.org/10.1016/j.jalgebra.2022.07.027

Brennan, J. B., Herzog, J., and Ulrich, B., Maximally generated Cohen-Macaulay modules, Math. Scand. 61 (1987), no. 2, 181–203. https://doi.org/10.7146/math.scand.a-12198

Bruns, W., and Herzog, J., Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993.

Celikbas, O., Dao, D., Takahashi, R., Modules that detect finite homological dimensions, Kyoto J. Math. 54 (2014), no. 2, 295–310. https://doi.org/10.1215/21562261-2642404

Celikbas, O., Goto, S., Takahashi, R., and Taniguchi, T., On the ideal case of a conjecture of Huneke and Wiegand, Proc. Edinb. Math. Soc. (2) 62 (2019), no. 3, 847–859. https://doi.org/10.1017/s0013091518000731

Christensen, L. W., Gorenstein dimensions, Lecture Notes in Mathematics, 1747. Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/BFb0103980

Christensen, L. W., Frankild, A., and Holm, H., On Gorenstein projective, injective and flat dimensions—a functorial description with applications, J. Algebra 302 (2006), no. 1, 231–279. https://doi.org/10.1016/j.jalgebra.2005.12.007

Corso, A., Huneke, C., Katz, D., and Vasconcelos, W. V., Integral closure of ideals and annihilators of homology, Commutative algebra, 33–48, Lect. Notes Pure Appl. Math., 244, Chapman & Hall/CRC, Boca Raton, FL, 2006. https://doi.org/10.1201/9781420028324.ch4

Dao, H., Li, J., and Miller, C., On the (non)rigidity of the Frobenius endomorphism over Gorenstein rings, Algebra Number Theory 4 (2010), no. 8, 1039–1053. https://doi.org/10.2140/ant.2010.4.1039

Dey, S., and Kobayashi, T., Vanishing of (co)homology of Burch and related modules, Illinois J. Math., to appear. arXiv:2201.01023

Foxby, H. B., Isomorphisms between complexes with applications to the homological theory of modules, Math. Scand. 40 (1977), no. 1, 5–19. https://doi.org/10.7146/math.scand.a-11671

Ghosh, D., Some criteria for regular and Gorenstein local rings via syzygy modules, J. Algebra Appl. 18 (2019), no. 5, 1950097, 15 pp. https://doi.org/10.1142/S021949881950097X

Ghosh, D., Gupta, A., and Puthenpurakal, T. J., Characterizations of regular local rings via syzygy modules of the residue field, J. Commut. Algebra 10 (2018), no. 3, 327–337. https://doi.org/10.1216/JCA-2018-10-3-327

Ghosh, D., and Puthenpurakal, T. J., Vanishing of (co)homology over deformations of Cohen-Macaulay local rings of minimal multiplicity, Glasg. Math. J. 61 (2019), no. 3, 705–725. https://doi.org/10.1017/s0017089518000459

Ghosh, D., and Takahashi, R., Auslander-Reiten conjecture and finite injective dimension of Hom, Kyoto J. Math., to appear. arXiv:2109.00692

Goto, S., Takahashi, R., and Taniguchi, N., Almost Gorenstein rings—towards a theory of higher dimension, J. Pure Appl. Algebra 219 (2015), no. 7, 2666–2712. https://doi.org/10.1016/j.jpaa.2014.09.022

Jorgensen, D. A., Complexity and Tor on a complete intersection, J. Algebra 211 (1999), no. 2, 578–598. https://doi.org/10.1006/jabr.1998.7743

Kobayashi, T. and Takahashi, R., Ulrich modules over Cohen-Macaulay local rings with minimal multiplicity, Q. J. Math. 70 (2019), no. 2, 487–507. https://doi.org/10.1093/qmath/hay055

Lichtenbaum, S., On the vanishing of Tor in regular local rings, Illinois J. Math. 10 (1966), 220–226. http://projecteuclid.org/euclid.ijm/1256055103

Martsinkovsky, A., A remarkable property of the (co) syzygy modules of the residue field of a nonregular local ring, J. Pure Appl. Algebra 110 (1996), no. 1, 9–13. https://doi.org/10.1016/0022-4049(95)00122-0

Matsumura, H., Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1986.

Roberts, P., Two applications of dualizing complexes over local rings, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 1, 103–106. http://www.numdam.org/item?id=ASENS_1976_4_9_1_103_0

Takahashi, R., Syzygy modules with semidualizing or G-projective summands, J. Algebra 295 (2006), no. 1, 179–194. https://doi.org/10.1016/j.jalgebra.2005.01.012

Ulrich, B., Gorenstein rings and modules with high numbers of generators, Math. Z. 188 (1984), no. 1, 23–32. https://doi.org/10.1007/BF01163869

Yoshida, K., Tensor products of perfect modules and maximal surjective Buchsbaum modules, J. Pure Appl. Algebra 123 (1998), no. 1–3, 313–326. https://doi.org/10.1016/S0022-4049(96)00088-6

Zargar, M. R., Celikbas, O., Gheibi, M., and Sadeghi, A., Homological dimensions of rigid modules, Kyoto J. Math. 58 (2018), no. 3, 639–669. https://doi.org/10.1215/21562261-2017-0033

Published

2023-06-05

How to Cite

Dey, S., & Ghosh, D. (2023). Complexity and rigidity of Ulrich modules, and some applications. MATHEMATICA SCANDINAVICA, 129(2). https://doi.org/10.7146/math.scand.a-136499

Issue

Section

Articles