Vanishing Morrey integrability for Riesz potentials in Morrey-Orlicz spaces
DOI:
https://doi.org/10.7146/math.scand.a-136539Abstract
Our aim in this paper is to establish vanishing Morrey integrability for Riesz potentials of functions in Morrey-Orlicz spaces. We discuss the size of the exceptional sets by using a capacity and Hausdorff measure. We also give Trudinger-type exponential Morrey integrability for Riesz potentials of functions in Morrey-Orlicz spaces.
References
Adams, D. R., A note on Riesz potentials, Duke Math. J. 42 (1975), no. 4, 765–778. http://projecteuclid.org/euclid.dmj/1077311348
Adams, D. R., and Hurri-Syrjänen, R., Vanishing exponential integrability for functions whose gradients belong to $L^n (log (e+L))^alpha $, J. Funct. Anal. 197 (2003), no. 1, 162–178. https://doi.org/10.1016/S0022-1236(02)00092-7
Brézis, H., and Wainger, S., A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations 5 (1980), no. 7, 773–789. https://doi.org/10.1080/03605308008820154
Cianchi, A., and Stroffolini, B., An extension of Hedberg's convolution inequality and applications, J. Math. Anal. Appl. 227 (1998), no. 1, 166–-186. https://doi.org/10.1006/jmaa.1998.6092
Edmunds, D. E., Gurka, P., and Opic, B., Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115 (1995), no. 2, 151–181.
Edmunds, D. E., Gurka, P., and Opic, B., Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces, Indiana Univ. Math. J. 44 (1995), no. 1, 19–-43. https://doi.org/10.1512/iumj.1995.44.1977
Edmunds, D. E., Gurka, P., and Opic, B., Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 5, 995–1009. https://doi.org/10.1017/S0308210500023210
Edmunds, D. E., and Hurri-Syrjänen, R., Sobolev inequalities of exponential type, Israel J. Math. 123 (2001), 61–92. https://doi.org/10.1007/BF02784120
Edmunds, D. E., and Krbec, M., Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 (1995), no. 1, 119–128.
Maeda, F.-Y., Mizuta, Y., Ohno, T., and Shimomura, T., Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137 (2013), no. 1, 76–96. https://doi.org/10.1016/j.bulsci.2012.03.008
Maeda, F.-Y., Mizuta, Y., Ohno, T., and Shimomura, T., Trudinger's inequality and continuity of potentials on Musielak-Orlicz-Morrey spaces, Potential Anal. 38 (2013), no. 2, 515–535. https://doi.org/10.1007/s11118-012-9284-y
Maeda, F.-Y., Mizuta, Y., and Shimomura, T., Growth properties of Musielak-Orlicz integral means for Riesz potentials, Nonlinear Anal. 112 (2015), 69–-83. https://doi.org/10.1016/j.na.2014.09.012
Meyers, N. G., A theory of capacities for potentials in Lebesgue classes, Math. Scand. 8 (1970), 255–292. https://doi.org/10.7146/math.scand.a-10981
Mizuta, Y., Continuity properties of potentials and Beppo-Levi-Deny functions, Hiroshima Math. J. 23 (1993), no. 1, 79–153. http://projecteuclid.org/euclid.hmj/1206128379
bibitem Mi Mizuta, Y., Potential theory in Euclidean spaces, GAKUTO International Series. Mathematical Sciences and Applications, 6. Gakkōtosho Co., Ltd., Tokyo, 1996.
Mizuta, Y., Multiple exponential integrability for Riesz potentials of functions in Orlicz classes, Adv. Math. Sci. Appl. 9 (1999), no. 2, 621–631.
Mizuta, Y., Morrey capacity and vanishing integrability for Riesz potentials in Morrey spaces, Topics in finite or infinite dimensional complex analysis, 187–195, Tohoku University Press, Sendai, 2013.
Mizuta, Y., Nakai, E., Ohno, T., and Shimomura, T., An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces $L^1,nu ,beta (G)$, Hiroshima Math. J. 38 (2008), no. 3, 425–436. http://projecteuclid.org/euclid.hmj/1233152779
Mizuta, Y., Ohno, T., and Shimomura, T., Integrability of maximal functions for generalized Lebesgue spaces with variable exponent, Math. Nachr. 281 (2008), no. 3, 386–395. https://doi.org/10.1002/mana.200510609
Mizuta, Y., and Shimomura, T., Exponential integrability for Riesz potentials of functions in Orlicz classes, Hiroshima Math. J. 28 (1998), no. 2, 355–371. http://projecteuclid.org/euclid.hmj/1206126767
Mizuta, Y., and Shimomura, T., Differentiability and Hölder continuity of Riesz potentials of Orlicz functions, Analysis (Munich) 20 (2000), no. 3, 201–223. https://doi.org/10.1524/anly.2000.20.3.201
Mizuta, Y., and Shimomura, T., Vanishing exponential integrability for Riesz potentials of functions in Orlicz classes, Illinois Math. J. 51 (2007), no. 4, 1039–1060. http://projecteuclid.org/euclid.ijm/1258138531
Morrey, C. B., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126–166. https://doi.org/10.2307/1989904
Peetre, J., On the theory of $L_p,lambda $ spaces, J. Functional Analysis 4 (1969), 71–87 https://doi.org/10.1016/0022-1236(69)90022-6
Serrin, J., A remark on Morrey potential, Control methods in PDE-dynamical systems, 307–315, Contemp. Math., 426, Amer. Math. Soc., Providence, RI, 2007. https://doi.org/10.1090/conm/426/08195
Shimomura, T., $L^q$-mean limits for Taylor's expansion of Riesz potentials of functions in Orlicz classes, Hiroshima Math. J. 27 (1997), no. 1, 159–175. http://projecteuclid.org/euclid.hmj/120612714
Stein, E. M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
Trudinger, N., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. https://doi.org/10.1512/iumj.1968.17.17028
Ziemer, W. P., Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. https://doi.org/10.1007/978-1-4612-1015-3