Remarks on conformal modulus in metric spaces

Authors

  • Matthew Romney

DOI:

https://doi.org/10.7146/math.scand.a-136656

Abstract

We give an example of an Ahlfors $3$-regular, linearly locally connected metric space homeomorphic to $\mathbb {R}^3$ containing a nondegenerate continuum $E$ with zero capacity, in the sense that the conformal modulus of the set of nontrivial curves intersecting $E$ is zero. We discuss this example in relation to the quasiconformal uniformization problem for metric spaces.

References

Bonk, M., and Kleiner, B., Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), no. 1, 127–183. https://doi.org/10.1007/s00222-002-0233-z

Daverman, R. J., Decompositions of manifolds, Pure and Applied Mathematics, 124, Academic Press, Inc., Orlando, FL, 1986.

Eriksson-Bique, S., and Poggi-Corradini, P., On the sharp lower bound for duality of modulus, Proc. Amer. Math. Soc. 150 (2022), no. 7, 2955–2968. https://doi.org/10.1090/proc/15951

Heinonen, J., and Koskela, P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. https://doi.org/10.1007/BF02392747

Heinonen, J., Koskela, P., Shanmugalingam, N., and Tyson, J. T., Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87–139. https://doi.org/10.1007/BF02788076

Heinonen, J., and Wu, J.-M., Quasisymmetric nonparametrization and spaces associated with the Whitehead continuum, Geom. Topol. 14 (2010), no. 2, 773–798. https://doi.org/10.2140/gt.2010.14.773

Jones, R., and Lahti, P., Duality of moduli and quasiconformal mappings in metric spaces, Anal. Geom. Metr. Spaces 8 (2020), no. 1, 166–181. https://doi.org/10.1515/agms-2020-0112

Lohvansuu, A., Duality of moduli in regular Toroidal metric spaces, Ann. Fenn. Math. 46 (2021), no. 1, 3–20. https://doi.org/10.5186/aasfm.2021.4610

Lohvansuu, A., and Rajala, K., Duality of moduli in regular metric spaces, Indiana Univ. Math. J. 70 (2021), no. 3, 1087–1102. https://doi.org/10.1512/iumj.2021.70.8433

Lytchak, A., and Wenger, S., Canonical parameterizations of metric disks, Duke Math. J. 169 (2020), no. 4, 761–797. https://doi.org/10.1215/00127094-2019-0065

Meier, D., and Wenger, S., Quasiconformal almost parametrizations of metric surfaces, (2021), preprint arXiv:2106.01256.

Ntalampekos, D., and Romney, M., Polyhedral approximation and uniformization for non-length surfaces, (2022), preprint arXiv:2206.01128.

Ntalampekos, D., and Romney, M., Polyhedral approximation of metric surfaces and applications to uniformization, Duke Math. J. (2022), to appear.

Pankka, P., and Vellis, V., Quasiconformal non-parametrizability of almost smooth spheres, Selecta Math. (N.S.) 23 (2017), no. 2, 1121–1151. https://doi.org/10.1007/s00029-016-0292-4

Pankka, P., and Wu, J.-M., Geometry and quasisymmetric parametrization of Semmes spaces, Rev. Mat. Iberoam. 30 (2014), no. 3, 893–960. https://doi.org/10.4171/RMI/802

Rajala, K., Uniformization of two-dimensional metric surfaces, Invent. Math. 207 (2017), no. 3, 1301–1375. https://doi.org/10.1007/s00222-016-0686-0

Rajala, K., and Romney, M., Reciprocal lower bound on modulus of curve families in metric surfaces, Ann. Acad. Sci. Fenn. Math. 44 (2019), no. 2, 681–692. https://doi.org/10.5186/aasfm.2019.4442

Semmes, S., Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities, Selecta Math. (N.S.) 2 (1996), no. 2, 155–295. https://doi.org/10.1007/BF01587936

Semmes, S., Good metric spaces without good parameterizations, Rev. Mat. Iberoam. 12 (1996), no. 1, 187–275. https://doi.org/10.4171/RMI/198

Siebenmann, L. C., Approximating cellular maps by homeomorphisms, Topology 11 (1972), 271–294. https://doi.org/10.1016/0040-9383(72)90014-6

Williams, M., Geometric and analytic quasiconformality in metric measure spaces, Proc. Amer. Math. Soc. 140 (2012), no. 4, 1251–1266. https://doi.org/10.1090/S0002-9939-2011-11035-9

Published

2023-06-05

How to Cite

Romney, M. (2023). Remarks on conformal modulus in metric spaces. MATHEMATICA SCANDINAVICA, 129(2). https://doi.org/10.7146/math.scand.a-136656

Issue

Section

Articles