Capacities from moduli in metric measure spaces

Authors

  • Olli Martio

DOI:

https://doi.org/10.7146/math.scand.a-136662

Abstract

The concept of capacity is an indispensable tool for analysis and path families and their moduli play a fundamental role in a metric space $X$. It is shown that the $AM_p(\Gamma )$- and $M_p(\Gamma )$-modulus create the capacities, $\mathrm {Cap}_p^{AM}(E,G)$ and $\mathrm {Cap}_p^{M}(E,G)$, respectively, where Γ is the path family connecting an arbitrary set $E \subset G$ to the complement of a bounded open set $G$. The capacities use Lipschitz functions and their upper gradients. For $p > 1$ the capacities coincide but differ for $p=1$. For $p \geq 1$ it is shown that the $\mathrm {Cap}_p^{AM}(E,G)$-capacity equals to the classical variational Dirichlet capacity of the condenser $(E,G)$ and the $\mathrm {Cap}_p^{M}(E,G)$-capacity to the $M_p(\Gamma )$-modulus.

References

Ambrosio, L., Di Marino, S., and Savaré, G., On the duality between $p$-modulus and probability measures, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 8, 1817–1853. https://doi.org/10.4171/JEMS/546

Björn, A., and Björn, J., Nonlinear potential theory on metric spaces, EMS Tracts Math., 17, European Mathematical Society (EMS), Zurich, 2011. https://doi.org/10.4171/099

Brelot, M., Lectures on potential theory, Notes by K. N. Gowrisankaran and M. K. Venkatesha Murthy, second edition, revised and enlarged with the help of S. Ramaswamy, Tata Institute of Fundamental Research Lectures on Mathematics, No. 19 Tata Institute of Fundamental Research, Bombay, 1967.

Choquet, G., Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953/54), 131–295. http://www.numdam.org/item?id=AIF_1954__5__131_0

Folland, G. B., Real analysis, 2nd ed., John Wiley & Sons, Inc., New York, 1999.

Fuglede, B., Extremal length and functional completion, Acta Math. 98 (1957), 171–219. https://doi.org/10.1007/BF02404474

Heinonen, J., Koskela, P., Shanmugalingam, N., and Tyson, J., Sobolev spaces on metric measure spaces, Cambridge University Press, 2015. https://doi.org/10.1017/CBO9781316135914

Honzlová Exnerová, V., Malý, J., and Martio, O., Modulus in Banach function spaces, Ark. Mat. 55 (2017), no. 1, 105–130. https://doi.org/10.4310/ARKIV.2017.v55.n1.a5

Honzlová Exnerová, V., Kalenda, O. F. K., Malý, J., and Martio, O., Plans of measures and $AM$-modulus, J. Funct. Anal. 281 (2021), no. 10, Paper No. 109205, 35 pp. https://doi.org/10.1016/j.jfa.2021.109205

Honzlová Exnerová, V., Malý, J., and Martio, O., $AM$-modulus and Hausdorff measure of codimension one in metric measure spaces, Math. Nachr. 295 (2022), no. 1, 140–157. https://doi.org/10.1002/mana.202000059

Martio, O., Functions of bounded variation and curves in metric measure spaces, Adv. Calc. Var. 9 (2016), no. 4, 305–322.

Martio, O., An alternative capacity in metric measure spaces, J. Math. Sci. (N.Y.) 258 (2021), no. 3, 303–312. https://doi.org/10.1007/s10958-021-05548-3

Published

2023-06-05

How to Cite

Martio, O. (2023). Capacities from moduli in metric measure spaces. MATHEMATICA SCANDINAVICA, 129(2). https://doi.org/10.7146/math.scand.a-136662

Issue

Section

Articles