Binomial edge ideals over an exterior algebra
DOI:
https://doi.org/10.7146/math.scand.a-137125Abstract
We introduce the study of binomial edge ideals over an exterior algebra.
References
Francisco, C., Mermin, J., and Schweig, J., A survey of Stanley-Reisner theory, Connections between algebra, combinatorics, and geometry, 209–234. Springer Proc. Math. Stat. 76, Springer, New York, 2014. https://doi.org/10.1007/978-1-4939-0626-0_5
Herzog, J., and Hibi, T., Monomial ideals, Graduate Texts in Mathematics 260, Springer-Verlag London, 2011. https://doi.org/10.1007/978-0-85729-106-6
Herzog, J., Hibi, T., Hreinsdotir, F., Kahle, T., and Rauh, J., Binomial edge ideals and conditional independence statements, Adv. in Appl. Math. 45 (2010), no. 3, 317–333. https://doi.org/10.1016/j.aam.2010.01.003
Herzog, J., Kiani, D., and Madani, S., The linear strand of determinantal facet ideals, Michigan Math. J. 66 (2017), no. 1, 107–123. https://doi.org/10.1307/mmj/1488510028
Herzog, J., Hibi, T., and Ohsugi H., Binomial ideals, Graduate Texts in Mathematics 279, Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-95349-6
Morey, S., and Villarreal, R. H., Edge ideals: algebraic and combinatorial properties, Progress in commutative algebra 1, 85–126, de Gruyter, Berlin, 2012.
Ohtani, M., Graphs and ideals generated by some 2-minors, Commun. Algebra 39 (2011), no. 3, 905–917. https://doi.org/10.1080/00927870903527584
Peeva, I., Graded syzygies, Algebra and Applications 14, Springer-Verlag London, 2011. https://doi.org/10.1007/978-0-85729-177-6
Rotman, J. J., Advanced modern algebra, part 1, Third edition, Graduate Studies in Mathematics 165, American Mathematical Society, Providence, RI, 2015. https://doi.org/10.1090/gsm/165
Welker, V., Which properties of Stanley-Reisner rings and simplicial complexes are topological?, Commutative algebra, 859–889, Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-89694-2_27