A note on $\mathcal{M}$-normal embedded subgroups of finite groups

Authors

  • Jian Sun
  • Haoran Yu

DOI:

https://doi.org/10.7146/math.scand.a-137337

Abstract

In this note, we obtain a criterion for $p$-nilpotency of a finite group. We not only simplify the proofs of the main theorems of Chen et al. [On $\mathcal{M}$-normal embedded subgroups and the structure of finite groups, Math. Scand. 127(2021), no. 2, 243–251] but also generalize these results.

References

Berkovich Y., and Isaacs I. M., $p$-supersolvability and actions on $p$-groups stabilizing certain subgroups, J. Algebra 414 (2014), 82–94. https://doi.org/10.1016/j.jalgebra.2014.04.026

Chen R. F., Zhao X. H., and Li R., On $M$-normal embedded subgroups and the structure of finite groups, Math. Scand. 127(2021), no. 2, 243–251. https://doi.org/10.7146/math.scand.a-126034

Huppert B., Endliche Gruppen, Vol. I, Springer-Verlag, Berlin-New York, 1967.

Isaacs I. M., Finite Group Theory, Graduate Studies in Mathematics 92, American Mathematical Society, Providence, R.I., 2008. https://doi.org/10.1090/gsm/092

Li C. W., The influence of Φ-$s$-supplemented subgroups on the structure of finite groups, J. Algebra Appl. 11(2012), no. 4, 1250064, 12 pp. https://doi.org/10.1142/S0219498812500648

Li C. W., Zhang X. M., and Yi X. L., A note on SΦ-supplemented subgroups, Ukrainian Math. J. 68 (2017), no. 8, 1305–1307. https://doi.org/10.1007/s11253-017-1295-9

Li X. H., and Zhao T., SΦ-supplemented subgroups of finite groups, Ukrainian Math. J. 64 (2012), no. 1, 102–109. https://doi.org/10.1007/s11253-012-0632-2

Miao L., and Lempken W., On $M$-supplemented subgroups of finite groups, J. Group Theory 12 (2009), no. 2, 271–287.

Published

2023-10-26

How to Cite

Sun, J., & Yu, H. (2023). A note on $\mathcal{M}$-normal embedded subgroups of finite groups. MATHEMATICA SCANDINAVICA, 129(3). https://doi.org/10.7146/math.scand.a-137337

Issue

Section

Articles