Finitely presented isomorphisms of Cuntz-Krieger algebras and continuous orbit equivalence of one-sided topological Markov shifts
DOI:
https://doi.org/10.7146/math.scand.a-139804Abstract
We introduce the notion of finitely presented isomorphism between Cuntz–Krieger algebras, and of finitely presented isomorphic Cuntz–Krieger algebras. We prove that there exists a finitely presented isomorphism between Cuntz–Krieger algebras $\mathcal{O}_A$ and $\mathcal{O}_B$ if and only if their one-sided topological Markov shifts $(X_A,\sigma_A)$ and $(X_B,\sigma_B)$ are continuously orbit equivalent. Hence the value $\det (I-A)$ is a complete invariant for the existence of a finitely presented isomorphism between isomorphic Cuntz–Krieger algebras, so that there exists a pair of Cuntz–Krieger algebras which are isomorphic but not finitely presented isomorphic.
References
Arklint, S. E., Eilers, S., and Ruiz, E., A dynamical characterization of diagonal-preserving $*$-isomorphisms of graph $C^*$-algebras, Ergodic Theory Dynam. Systems 38 (2018), no. 7, 2401–2421. https://doi.org/10.1017/etds.2016.141
Bates, T., and Pask, D. Flow equivalence of graph algebras, Ergodic Theory Dynam. Systems 24 (2004), no. 2, 367–382. https://doi.org/10.1017/S0143385703000348
Brownlowe, N., Carlsen, T. M., and Whittaker, M. F., Graph algebras and orbit equivalence, Ergodic Theory Dynam. Systems 37 (2017), no. 2, 389–417. https://doi.org/10.1017/etds.2015.52
Carlsen, T. M., Eilers, S., Ortega, E., and Restorff, G., Flow equivalence and orbit equivalence for shifts of finite type and isomorphism of their groupoids, J. Math. Anal. Appl. 469 (2019), no. 2, 1088–1110. https://doi.org/10.1016/j.jmaa.2018.09.056
Carlsen, T. M., and Rout, J., Diagonal-preserving gauge-invariant isomorphisms of graph $C^*$-algebras, J. Funct. Anal. 273 (2017), no. 9, 2981–2993. https://doi.org/10.1016/j.jfa.2017.06.018
Cuntz, J., Automorphisms of certain simple $C^*$-algebras, Quantum fields—algebras, processes (Proc. Sympos., Univ. Bielefeld, Bielefeld, 1978), 187–196, Springer, Vienna, 1980.
Cuntz, J., A class of $C^*$-algebras and topological Markov chains II: reducible chains and the Ext- functor for $C^*$-algebras, Invent. Math. 63 (1981), no. 1, 25–40. https://doi.org/10.1007/BF01389192
Cuntz, J., The classification problem for the $C^*$-algebra $mathcal O_A$, Geometric methods in operator algebras (Kyoto, 1983), 145–151, Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow, 1986.
Enomoto, M., Fujii, M., and Watatani, Y., $K_0$-groups and classifications of Cuntz–Krieger algebras, Math. Japon. 26 (1981), no. 4, 443–460.
Lind, D., and Marcus, B., An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511626302
Matsumoto, K., Orbit equivalence of topological Markov shifts and Cuntz–Krieger algebras, Pacific J. Math. 246 (2010), no. 1, 199–225. https://doi.org/10.2140/pjm.2010.246.199
Matsumoto, K., Some remarks on orbit equivalence of topological Markov shifts and Cuntz–Krieger algebras, Yokohama Math. J. 58 (2012), 41–52.
Matsumoto, K., A short note on Cuntz splice from a viewpoint of continuous orbit equivalence of topological Markov shifts, Math. Scand. 123 (2018), no. 1, 91–100. https://doi.org/10.7146/math.scand.a-102939
Matsumoto, K., State splitting, strong shift equivalence and stable isomorphism of Cuntz–Krieger algebras, Dyn. Syst. 34 (2019), no. 1, 93–112. https://doi.org/10.1080/14689367.2018.1470227
Matsumoto, K., and Matui, H., Continuous orbit equivalence of topological Markov shifts and Cuntz–Krieger algebras, Kyoto J. Math. 54 (2014), no. 4, 863–877. https://doi.org/10.1215/21562261-2801849
Matui, H., Homology and topological full groups of étale groupoids on totally disconnected spaces, Proc. Lond. Math. Soc. (3) 104 (2012), no. 1, 27–56. https://doi.org/10.1112/plms/pdr029
Matui, H., Topological full groups of one-sided shifts of finite type, J. Reine Angew. Math. 705 (2015), 35–84. https://doi.org/10.1515/crelle-2013-0041
Renault, J., Cartan subalgebras in $C^*$-algebras, Irish Math. Soc. Bull. 61 (2008), 29–63.
Rørdam, M., Classification of Cuntz–Krieger algebras, K-Theory 9 (1995), no. 1, 31–58. https://doi.org/10.1007/BF00965458
Williams, R. F., Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120–153; errata, ibid. (2) 99 (1974), 380–381. https://doi.org/10.2307/1970908