Attainable measures for certain types of $p$-adic Duffin-Schaeffer sets

Authors

  • Mathias L. Laursen

DOI:

https://doi.org/10.7146/math.scand.a-139832

Abstract

This paper settles recent conjectures concerning the $p$-adic Haar measure applied to a family of sets defined in terms of Diophantine approximation. This is done by determining the spectrum of measure values for each family and seeing that this contradicts the corresponding conjectures.

References

Badziahin, D., and Bugeaud, Y., Multiplicative $p$-adic approximation, Michigan Math. J. 71 (2022), no. 1, 121–143. https://doi.org/10.1307/mmj/20195785

Cassels, J. W. S., Some metrical theorems in Diophantine approximation. I, Proc. Cambridge Philos. Soc. 46 (1950), no. 2, 209–218. https://doi.org/10.1017/S0305004100025676

Duffin, R. J., and Schaeffer, A. C., Khintchine's problem in metric Diophantine approximation, Duke Math. J. 8 (1941), no. 2, 243–255. https://doi.org/10.1215/S0012-7094-41-00818-9

Gallagher, P., Approximation by reduced fractions, J. Math. Soc. Japan 13 (1961), no. 4, 342–345. https://doi.org/10.2969/jmsj/01340342

Haynes, A. K., The metric theory of $p$-adic approximation, Int. Math. Res. Not. IMRN 2010, no. 1, 18–52. https://doi.org/10.1093/imrn/rnp114

Jarník, V., Sur les approximations diophantiques des nombres $p$-adiques, Rev. Ci. (Lima) 47 (1945), 489–505.

Khintchine, A., Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann. 92 (1924), no. 1–2, 115–125. https://doi.org/10.1007/BF01448437

Koukoulopoulos, D., and Maynard, J., On the Duffin-Schaeffer conjecture, Ann. of Math. (2) 192 (2020), no. 1, 251–307. https://doi.org/10.4007/annals.2020.192.1.5

Kristensen, S., and Laursen, M. L., The $p$-adic Duffin-Schaeffer conjecture, Funct. Approx. Comment. Math. 68 (2023), no. 1, 113–126. https://doi.org/10.7169/facm/2042

Lutz, E., Sur les approximations diophantiennes linéaires $p$-adiques, Actualités Scientifiques et Industrielles; No. 1224. Hermann & Cie, Paris, 1955.

Montgomery, H. L., and Vaughan, R. C., Multiplicative number theory I. Classic theory, Cambridge Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge, 2007.

Published

2023-10-26

How to Cite

Laursen, M. L. (2023). Attainable measures for certain types of $p$-adic Duffin-Schaeffer sets. MATHEMATICA SCANDINAVICA, 129(3). https://doi.org/10.7146/math.scand.a-139832

Issue

Section

Articles