Splittings for $C^*$-correspondences and strong shift equivalence
DOI:
https://doi.org/10.7146/math.scand.a-142308Abstract
We present an extension of the notion of in-splits from symbolic dynamics to topological graphs and, more generally, to $C^*$-correspondences. We demonstrate that in-splits provide examples of strong shift equivalences of $C^*$-correspondences. Furthermore, we provide a streamlined treatment of Muhly, Pask, and Tomforde's proof that any strong shift equivalence of regular $C^*$-correspondences induces a (gauge-equivariant) Morita equivalence between Cuntz-Pimsner algebras. For topological graphs, we prove that in-splits induce diagonal-preserving gauge-equivariant $*$-isomorphisms in analogy with the results for Cuntz-Krieger algebras. Additionally, we examine the notion of out-splits for $C^*$-correspondences.
References
Armstrong, B., Brix, K. A., Carlsen, T. M., and Eilers, S., Conjugacy of local homeomorphisms via groupoids and $C^*$-algebras, Ergodic Theory Dynam. Systems 43 (2023), no. 8, 2516–2537. https://doi.org/10.1017/etds.2022.50
Bates, T., and Pask, D., Flow equivalence of graph algebras, Ergodic Theory Dynam. Systems 24 (2004), no. 2, 367–382. https://doi.org/10.1017/S0143385703000348
Boyle, M., Franks J., and Kitchens, B., Automorphisms of one-sided subshifts of finite type, Ergodic Theory Dynam. Systems 10 (1990), no. 3, 421–449. https://doi.org/10.1017/S0143385700005678
Brenken, B., A dynamical core for topological directed graphs, Münster J. Math. 3 (2010), 111–144.
Brix, K. A., and Carlsen, T. M., Cuntz-Krieger algebras and one-sided conjugacy of shift of finite type and their groupoids, J. Aust. Math. Soc. 109 (2020), no. 3, 289–298. https://doi.org/10.1017/S1446788719000168
Carlsen, T. M., Dor-On, A., and Eilers, S., Shift equivalence through the lens of Cuntz-Krieger algebras, Analysis & PDE, to appear, arXiv:2011.10320v3.
Carlsen, T. M., and Rout, J., Diagonal-preserving gauge-invariant isomorphisms of graph $C^*$-algebras, J. Funct. Anal. 273 (2017), no. 9, 2981–2993. https://doi.org/10.1016/j.jfa.2017.06.018
Combes, F., Crossed products and Morita equivalence, Proc. London Math. Soc. (3) 49 (1984), no. 2, 289–306. https://doi.org/10.1112/plms/s3-49.2.289
Cuntz, J., and Krieger, W., A class of $C^*$-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. https://doi.org/10.1007/BF01390048
Dor-On, A., Eilers, S., and Geffen, S., Classification of irreversible and reversible Pimsner operator algebras, Compos. Math. 156 (2020), no. 12, 2510–2535. https://doi.org/10.1112/s0010437x2000754x
Eilers, S., Restorff, G., Ruiz, E., and Sørensen, A. P. W., The complete classification of unital graph $C^*$-algebras: Geometric and strong, Duke Math. J. 170 (2021), no. 11, 2421–2517. https://doi.org/10.1215/00127094-2021-0060
Eilers, S., and Ruiz, E., Refined moves for structure-preserving isomorphism of graph $C^*$-algebras, arXiv:1908.03714v1.
Echterhoff, S., Kalisewski, S., Quigg, J., and Raeburn, I., A categorical approach to imprimitivity theorems for $C^*$-dynamical systems, Mem. Amer. Math. Soc. 180 (2006), no. 850, viii+169 pp. https://doi.org/10.1090/memo/0850
Eryüzlü, M., Passing $C^*$-correspondence relations to the Cuntz-Pimsner algebras, Münster J. Math. 15 (2022), no. 2, 441–471.
Frank, M., and Larson, D., Frames in Hilbert $C^*$-modules and $C^*$-algebras, J. Operator Theory, 48 (2002), no. 2, 273–314.
Frausino, R., Ng, A. N. S., and Sims, A., Reconstruction of topological graphs and their Hilbert modules, Proc. Roy. Soc. Edinburgh Sect. A, First view, (2023) 1–26. https://doi.org/10.1017/prm.2023.99
Kajiwara, T., Pinzari, C., and Watatani, Y., Jones index theory for Hilbert $C^*$-bimodules and its equivalence with conjugation theory, J. Funct. Anal. 215 (2004), no. 1, 1–49. https://doi.org/10.1016/j.jfa.2003.09.008
Kakariadis, E. T. A., and Katsoulis, E. G., $C^*$-algebras and equivalences for $C^*$-correspondences, J. Funct. Anal. 266 (2014), no. 2, 956–988; errata, ibid. 283 (2022), no. 6, Paper No. 109564, 5 pp. https://doi.org/10.1016/j.jfa.2022.109564
Katsura, T., A class of $C^*$-algebras generalizing both graph algebras and homeomorphism $C^*$-algebras. I. Fundamental results, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4287–4322. https://doi.org/10.1090/S0002-9947-04-03636-0
Katsura, T., On $C^*$-algebras associated with $C^*$-correspondences, J. Funct. Anal. 217 (2004), no. 2, 366–401. https://doi.org/10.1016/j.jfa.2004.03.010
Katsura, T., Cuntz-Krieger algebras and $C^*$-algebras of topological graphs, Acta Appl. Math. 108 (2009), no. 3, 617–624. https://doi.org/10.1007/s10440-009-9535-0
Katsura, T., Topological graphs and singly generated dynamical systems, arXiv:2107.01389v1.
Laca, M., and Neshveyev, S., KMS states of quasi-free dynamics on Pimsner algebras, J. Funct. Anal. 211 (2004), no. 2, 457–482. https://doi.org/10.1016/j.jfa.2003.08.008
Lance, E. C., Hilbert $C^*$-modules. A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, 210. Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511526206
Lind, D., and Marcus, B., An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge (1995). https://doi.org/10.1017/CBO9780511626302
Luef, F., The Balian-Low theorem and noncommutative tori, Expo. Math. 36 (2018), no. 2, 221–227. https://doi.org/10.1016/j.exmath.2018.03.003
Muhly, P., Pask, D., and Tomforde, M., Strong shift equivalence of $C^*$-correspondences, Israel J. Math., 167 (2008), 315–346. https://doi.org/10.1007/s11856-008-1051-9
Muhly, P., and Tomforde, M.„ Topological quivers, Internat. J. Math. 16 (2005), no.7, 693–755. https://doi.org/10.1142/S0129167X05003077
Mundey, A., The noncommutative dynamics and topology of iterated function systems, Ph.D. dissertation, School of Mathematics and Applied Statistics, Univ. Wollongong, 2020 https://ro.uow.edu.au/theses1/778/.
Parry, W., and Sullivan, D., A topological invariant of flows on 1-dimensional spaces, Topology 14 (1975), no. 4, 297–299. https://doi.org/10.1016/0040-9383(75)90012-9
Pimsner, M., A class of $C^*$-algebras generalising both Cuntz-Krieger algebras and crossed products by $Z $, Free probability theory (Waterloo, ON, 1995), 189–212, Fields Inst. Commun., 12, Amer. Math. Soc., Providence, RI, 1997.
Raeburn, I., Graph algebras, CBMS Regional Conference Series in Mathematics, 103. American Mathematical Society, Providence, RI, 2005. https://doi.org/10.1090/cbms/103
Raeburn, I., and Williams, D., Morita equivalence and continuous-trace $C^*$-algebras, Mathematical Surveys and Monographs, 60. American Mathematical Society, Providence, RI, 1998. https://doi.org/10.1090/surv/060
Williams, R. F., Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120–153; errata, ibid. (2) 99 (1974), 380–381. https://doi.org/10.2307/1970908