Invertible objects in Franke's comodule categories

Authors

  • Drew Heard

DOI:

https://doi.org/10.7146/math.scand.a-142361

Abstract

We study the Picard group of Franke's category of quasi-periodic $E_0E$-comodules for $E$ a 2-periodic Landweber exact cohomology theory of height $n$ such as Morava $E$-theory, showing that for $2p-2 > n^2+n$, this group is infinite cyclic, generated by the suspension of the unit. This is analogous to, but independent of, the corresponding calculations by Hovey and Sadofsky in the $E$-local stable homotopy category. We also give a computation of the Picard group of $I_n$-complete quasi-periodic $E_0E$-comodules when $E$ is Morava $E$-theory, as studied by Barthel-Schlank-Stapleton for $2p-2 \ge n^2$ and $p-1 \nmid n$, and compare this to the Picard group of the $K(n)$-local stable homotopy category, showing that they agree up to extension.

References

Baker, A., and Richter, B., Invertible modules for commutative $mathbb S$-algebras with residue fields, Manuscripta Math. 118 (2005), no. 1, 99–119. https://doi.org/10.1007/s00229-005-0582-1

Balmer, P., Dell'Ambrogio, I., and Sanders, B., Restriction to finite-index subgroups as étale extensions in topology, KK-theory and geometry, Algebr. Geom. Topol. 15 (2015), no. 5, 3025–3047. https://doi.org/10.2140/agt.2015.15.3025

Balmer, P., Dell'Ambrogio, I., and Sanders, B., Grothendieck-Neeman duality and the Wirthmüller isomorphism, Compos. Math. 152 (2016), no. 8, 1740–1776. https://doi.org/10.1112/S0010437X16007375

Barnes, D., and Roitzheim, C., Monoidality of Franke's exotic model, Adv. Math. 228 (2011), no. 6, 3223–3248. https://doi.org/10.1016/j.aim.2011.08.005

Barthel, T., and Beaudry, A., Chromatic structures in stable homotopy theory, in “Handbook of homotopy theory”, CRC Press/Chapman Hall Handb. Math. Ser., CRC Press, Boca Raton, FL, 2020, pp. 163–220.

Barthel, T., and Heard, D., Algebraic chromatic homotopy theory for $BP_*BP$-comodules, Proc. Lond. Math. Soc. (3) 117 (2018), no. 6, 1135–1180. https://doi.org/10.1112/plms.12158

Barthel, T., and Pstrc agowski, P., Morava K-theory and filtrations by powers, Journal of the Institute of Mathematics of Jussieu. First view (2023), 1–77. https://doi.org/10.1017/S1474748023000233

Barthel, T., Schlank, T. M., and Stapleton, N., Chromatic homotopy theory is asymptotically algebraic, Invent. Math. 220 (2020), no. 3, 737–845. https://doi.org/10.1007/s00222-019-00943-9

Barthel, T., Schlank, T. M., and Stapleton, N., Monochromatic homotopy theory is asymptotically algebraic, Adv. Math. 393 (2021), Paper No. 107999, 44. https://doi.org/10.1016/j.aim.2021.107999

Behrens, M., The homotopy groups of $S_E(2)$ at $pgeq 5$ revisited, Adv. Math. 230 (2012), no. 2, 458–492. https://doi.org/10.1016/j.aim.2012.02.023

Behrens, M., and Shah, J., $C_2$-equivariant stable homotopy from real motivic stable homotopy, Ann. K-Theory 5 (2020), no. 3, 411–464. https://doi.org/10.2140/akt.2020.5.411

Borceux, F., Handbook of categorical algebra. 2. Categories and structures, Encyclopedia of Mathematics and its Applications, vol. 51, Cambridge University Press, Cambridge, 1994.

Devinatz, E. S., Morava's change of rings theorem, The Čech centennial (Boston, MA, 1993), 83–118, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995. https://doi.org/10.1090/conm/181/02031

Dwyer, W. G., and Greenlees, J. P. C., Complete modules and torsion modules, Amer. J. Math. 124 (2002), no. 1, 199–220.

Franke, J., Uniqueness theorems for certain triangulated categories possessing an Adams spectral sequence, Unpublished preprint, available at https://faculty.math.illinois.edu/K-theory/0139/, 1996.

Goerss, P., Henn, H.-W., Mahowald, M., and Rezk, C., A resolution of the $K(2)$-local sphere at the prime 3, Ann. of Math. (2) 162 (2005), no. 2, 777–822. https://doi.org/10.4007/annals.2005.162.777

Goerss, P. G., Quasi-coherent sheaves on the moduli stack of formal groups, arXiv:0802.0996 (2008), arXiv: 0802.0996.

Greenlees, J. P. C., and May, J. P., Derived functors of $I$-adic completion and local homology, J. Algebra 149 (1992), no. 2, 438–453. https://doi.org/10.1016/0021-8693(92)90026-I

Hashimoto, M., Equivariant twisted inverses, Foundations of Grothendieck duality for diagrams of schemes, 261–478, Lecture Notes in Math., 1960, Springer, Berlin, 2009. https://doi.org/10.1007/978-3-540-85420-3

Heard, D., The $mathop Sp_k,n$-local stable homotopy category, Algebr. Geom. Topol. 23 (2023), no. 8, 3655–3706. https://doi.org/10.2140/agt.2023.23.3655

Hinich, V., Dwyer-Kan localization revisited, Homology Homotopy Appl. 18 (2016), no. 1, 27–48. https://doi.org/10.4310/HHA.2016.v18.n1.a3

Hopkins, M. J., Mahowald, M., and Sadofsky, H., Constructions of elements in Picard groups, Topology and representation theory (Evanston, IL, 1992), 89–126, Contemp. Math., 158, Amer. Math. Soc., Providence, RI, 1994. https://doi.org/10.1090/conm/158/01454

Hovey, M., Homotopy theory of comodules over a Hopf algebroid, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, 261–304, Contemp. Math., 346, Amer. Math. Soc., Providence, RI, 2004. https://doi.org/10.1090/conm/346/06291

Hovey, M., Operations and co-operations in Morava $E$-theory, Homology Homotopy Appl. 6 (2004), no. 1, 201–236.

Hovey, M., Morava $E$-theory of filtered colimits, Trans. Amer. Math. Soc. 360 (2008), no. 1, 369–382. https://doi.org/10.1090/S0002-9947-07-04298-5

Hovey, M., and Sadofsky, H., Invertible spectra in the $E(n)$-local stable homotopy category, J. London Math. Soc. (2) 60 (1999), no. 1, 284–302. https://doi.org/10.1112/S0024610799007784

Hovey, M., and Strickland, N., Comodules and Landweber exact homology theories, Adv. Math. 192 (2005), no. 2, 427–456. https://doi.org/10.1016/j.aim.2004.04.011

Hovey, M., and Strickland, N. P., Morava $K$-theories and localisation, Mem. Amer. Math. Soc. 139 (1999), no. 666, viii+100. https://doi.org/10.1090/memo/0666

Lader, O., Une résolution projective pour le second groupe de Morava pour $pge 5$ et applications, Ph.D. thesis, Université de Strasbourg, 2013.

Lurie, J., Higher algebra, Preprint available at https://www.math.ias.edu/ lurie/papers/HA.pdf, 2017.

Mathew, A., The Galois group of a stable homotopy theory, Adv. Math. 291 (2016), 403–541. https://doi.org/10.1016/j.aim.2015.12.017

Mathew, A., Naumann, N., and Noel, J., Nilpotence and descent in equivariant stable homotopy theory, Adv. Math. 305 (2017), 994–1084. https://doi.org/10.1016/j.aim.2016.09.027

Mathew, A., and Stojanoska, V., The Picard group of topological modular forms via descent theory, Geom. Topol. 20 (2016), no. 6, 3133–3217. https://doi.org/10.2140/gt.2016.20.3133

Miller, H. R., and Ravenel, D. C., Morava stabilizer algebras and the localization of Novikov's $E_2$-term, Duke Math. J. 44 (1977), no. 2, 433–447.

Naumann, N., The stack of formal groups in stable homotopy theory, Adv. Math. 215 (2007), no. 2, 569–600. https://doi.org/10.1016/j.aim.2007.04.007

Patchkoria, I., and Pstrc agowski, P., Adams spectral sequences and Franke's algebraicity conjecture, (2021), arXiv:2110.03669.

Pstrc agowski, P., Chromatic homotopy theory is algebraic when $p>n^2+n+1$, Adv. Math. 391 (2021), Paper No. 107958, 37 pp. https://doi.org/https://doi.org/10.1016/j.aim.2021.107958

Ravenel, D. C., Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, 121, Academic Press, Inc., Orlando, FL, 1986.

Ravenel, D. C., Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, 128, Princeton University Press, Princeton, NJ, 1992.

Rognes, J., Galois extensions of structured ring spectra. Stably dualizable groups, Mem. Amer. Math. Soc. 192 (2008), no. 898, viii+137. https://doi.org/10.1090/memo/0898

Schwede, S., and Shipley, B., Stable model categories are categories of modules, Topology 42 (2003), no. 1, 103–153. https://doi.org/10.1016/S0040-9383(02)00006-X

Serre, J.-P., Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258–294. https://doi.org/10.2307/1969789

Strickland, N. P., Gross-Hopkins duality, Topology 39 (2000), no. 5, 1021–1033. https://doi.org/10.1016/S0040-9383(99)00049-X

Published

2024-02-26

How to Cite

Heard, D. (2024). Invertible objects in Franke’s comodule categories. MATHEMATICA SCANDINAVICA, 130(1). https://doi.org/10.7146/math.scand.a-142361

Issue

Section

Articles