Invertible objects in Franke's comodule categories
DOI:
https://doi.org/10.7146/math.scand.a-142361Abstract
We study the Picard group of Franke's category of quasi-periodic $E_0E$-comodules for $E$ a 2-periodic Landweber exact cohomology theory of height $n$ such as Morava $E$-theory, showing that for $2p-2 > n^2+n$, this group is infinite cyclic, generated by the suspension of the unit. This is analogous to, but independent of, the corresponding calculations by Hovey and Sadofsky in the $E$-local stable homotopy category. We also give a computation of the Picard group of $I_n$-complete quasi-periodic $E_0E$-comodules when $E$ is Morava $E$-theory, as studied by Barthel-Schlank-Stapleton for $2p-2 \ge n^2$ and $p-1 \nmid n$, and compare this to the Picard group of the $K(n)$-local stable homotopy category, showing that they agree up to extension.
References
Baker, A., and Richter, B., Invertible modules for commutative $mathbb S$-algebras with residue fields, Manuscripta Math. 118 (2005), no. 1, 99–119. https://doi.org/10.1007/s00229-005-0582-1
Balmer, P., Dell'Ambrogio, I., and Sanders, B., Restriction to finite-index subgroups as étale extensions in topology, KK-theory and geometry, Algebr. Geom. Topol. 15 (2015), no. 5, 3025–3047. https://doi.org/10.2140/agt.2015.15.3025
Balmer, P., Dell'Ambrogio, I., and Sanders, B., Grothendieck-Neeman duality and the Wirthmüller isomorphism, Compos. Math. 152 (2016), no. 8, 1740–1776. https://doi.org/10.1112/S0010437X16007375
Barnes, D., and Roitzheim, C., Monoidality of Franke's exotic model, Adv. Math. 228 (2011), no. 6, 3223–3248. https://doi.org/10.1016/j.aim.2011.08.005
Barthel, T., and Beaudry, A., Chromatic structures in stable homotopy theory, in “Handbook of homotopy theory”, CRC Press/Chapman Hall Handb. Math. Ser., CRC Press, Boca Raton, FL, 2020, pp. 163–220.
Barthel, T., and Heard, D., Algebraic chromatic homotopy theory for $BP_*BP$-comodules, Proc. Lond. Math. Soc. (3) 117 (2018), no. 6, 1135–1180. https://doi.org/10.1112/plms.12158
Barthel, T., and Pstrc agowski, P., Morava K-theory and filtrations by powers, Journal of the Institute of Mathematics of Jussieu. First view (2023), 1–77. https://doi.org/10.1017/S1474748023000233
Barthel, T., Schlank, T. M., and Stapleton, N., Chromatic homotopy theory is asymptotically algebraic, Invent. Math. 220 (2020), no. 3, 737–845. https://doi.org/10.1007/s00222-019-00943-9
Barthel, T., Schlank, T. M., and Stapleton, N., Monochromatic homotopy theory is asymptotically algebraic, Adv. Math. 393 (2021), Paper No. 107999, 44. https://doi.org/10.1016/j.aim.2021.107999
Behrens, M., The homotopy groups of $S_E(2)$ at $pgeq 5$ revisited, Adv. Math. 230 (2012), no. 2, 458–492. https://doi.org/10.1016/j.aim.2012.02.023
Behrens, M., and Shah, J., $C_2$-equivariant stable homotopy from real motivic stable homotopy, Ann. K-Theory 5 (2020), no. 3, 411–464. https://doi.org/10.2140/akt.2020.5.411
Borceux, F., Handbook of categorical algebra. 2. Categories and structures, Encyclopedia of Mathematics and its Applications, vol. 51, Cambridge University Press, Cambridge, 1994.
Devinatz, E. S., Morava's change of rings theorem, The Čech centennial (Boston, MA, 1993), 83–118, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995. https://doi.org/10.1090/conm/181/02031
Dwyer, W. G., and Greenlees, J. P. C., Complete modules and torsion modules, Amer. J. Math. 124 (2002), no. 1, 199–220.
Franke, J., Uniqueness theorems for certain triangulated categories possessing an Adams spectral sequence, Unpublished preprint, available at https://faculty.math.illinois.edu/K-theory/0139/, 1996.
Goerss, P., Henn, H.-W., Mahowald, M., and Rezk, C., A resolution of the $K(2)$-local sphere at the prime 3, Ann. of Math. (2) 162 (2005), no. 2, 777–822. https://doi.org/10.4007/annals.2005.162.777
Goerss, P. G., Quasi-coherent sheaves on the moduli stack of formal groups, arXiv:0802.0996 (2008), arXiv: 0802.0996.
Greenlees, J. P. C., and May, J. P., Derived functors of $I$-adic completion and local homology, J. Algebra 149 (1992), no. 2, 438–453. https://doi.org/10.1016/0021-8693(92)90026-I
Hashimoto, M., Equivariant twisted inverses, Foundations of Grothendieck duality for diagrams of schemes, 261–478, Lecture Notes in Math., 1960, Springer, Berlin, 2009. https://doi.org/10.1007/978-3-540-85420-3
Heard, D., The $mathop Sp_k,n$-local stable homotopy category, Algebr. Geom. Topol. 23 (2023), no. 8, 3655–3706. https://doi.org/10.2140/agt.2023.23.3655
Hinich, V., Dwyer-Kan localization revisited, Homology Homotopy Appl. 18 (2016), no. 1, 27–48. https://doi.org/10.4310/HHA.2016.v18.n1.a3
Hopkins, M. J., Mahowald, M., and Sadofsky, H., Constructions of elements in Picard groups, Topology and representation theory (Evanston, IL, 1992), 89–126, Contemp. Math., 158, Amer. Math. Soc., Providence, RI, 1994. https://doi.org/10.1090/conm/158/01454
Hovey, M., Homotopy theory of comodules over a Hopf algebroid, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, 261–304, Contemp. Math., 346, Amer. Math. Soc., Providence, RI, 2004. https://doi.org/10.1090/conm/346/06291
Hovey, M., Operations and co-operations in Morava $E$-theory, Homology Homotopy Appl. 6 (2004), no. 1, 201–236.
Hovey, M., Morava $E$-theory of filtered colimits, Trans. Amer. Math. Soc. 360 (2008), no. 1, 369–382. https://doi.org/10.1090/S0002-9947-07-04298-5
Hovey, M., and Sadofsky, H., Invertible spectra in the $E(n)$-local stable homotopy category, J. London Math. Soc. (2) 60 (1999), no. 1, 284–302. https://doi.org/10.1112/S0024610799007784
Hovey, M., and Strickland, N., Comodules and Landweber exact homology theories, Adv. Math. 192 (2005), no. 2, 427–456. https://doi.org/10.1016/j.aim.2004.04.011
Hovey, M., and Strickland, N. P., Morava $K$-theories and localisation, Mem. Amer. Math. Soc. 139 (1999), no. 666, viii+100. https://doi.org/10.1090/memo/0666
Lader, O., Une résolution projective pour le second groupe de Morava pour $pge 5$ et applications, Ph.D. thesis, Université de Strasbourg, 2013.
Lurie, J., Higher algebra, Preprint available at https://www.math.ias.edu/ lurie/papers/HA.pdf, 2017.
Mathew, A., The Galois group of a stable homotopy theory, Adv. Math. 291 (2016), 403–541. https://doi.org/10.1016/j.aim.2015.12.017
Mathew, A., Naumann, N., and Noel, J., Nilpotence and descent in equivariant stable homotopy theory, Adv. Math. 305 (2017), 994–1084. https://doi.org/10.1016/j.aim.2016.09.027
Mathew, A., and Stojanoska, V., The Picard group of topological modular forms via descent theory, Geom. Topol. 20 (2016), no. 6, 3133–3217. https://doi.org/10.2140/gt.2016.20.3133
Miller, H. R., and Ravenel, D. C., Morava stabilizer algebras and the localization of Novikov's $E_2$-term, Duke Math. J. 44 (1977), no. 2, 433–447.
Naumann, N., The stack of formal groups in stable homotopy theory, Adv. Math. 215 (2007), no. 2, 569–600. https://doi.org/10.1016/j.aim.2007.04.007
Patchkoria, I., and Pstrc agowski, P., Adams spectral sequences and Franke's algebraicity conjecture, (2021), arXiv:2110.03669.
Pstrc agowski, P., Chromatic homotopy theory is algebraic when $p>n^2+n+1$, Adv. Math. 391 (2021), Paper No. 107958, 37 pp. https://doi.org/https://doi.org/10.1016/j.aim.2021.107958
Ravenel, D. C., Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, 121, Academic Press, Inc., Orlando, FL, 1986.
Ravenel, D. C., Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, 128, Princeton University Press, Princeton, NJ, 1992.
Rognes, J., Galois extensions of structured ring spectra. Stably dualizable groups, Mem. Amer. Math. Soc. 192 (2008), no. 898, viii+137. https://doi.org/10.1090/memo/0898
Schwede, S., and Shipley, B., Stable model categories are categories of modules, Topology 42 (2003), no. 1, 103–153. https://doi.org/10.1016/S0040-9383(02)00006-X
Serre, J.-P., Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258–294. https://doi.org/10.2307/1969789
Strickland, N. P., Gross-Hopkins duality, Topology 39 (2000), no. 5, 1021–1033. https://doi.org/10.1016/S0040-9383(99)00049-X