On the shape of correlation matrices for unitaries

Authors

  • Michiya Mori

DOI:

https://doi.org/10.7146/math.scand.a-142800

Abstract

For a positive integer n, we study the collection Ffin(n) formed of all n×n matrices whose entries aij, 1i,jn, can be written as aij=τ(UjUi) for some n-tuple U1,U2,,Un of unitaries in a finite-dimensional von Neumann algebra M with tracial state τ. We show that Ffin(n) is not closed for every n8. This improves a result by Musat and R{ø}rdam which states the same for n11.

References

Bhat, B. V. S., Nayak, S., and Shankar, P., On products of symmetries in von Neumann algebras, J. Operator Theory, to appear. https://doi.org/10.48550/arXiv.2204.00009

Dykema, K., and Juschenko, K., Matrices of unitary moments, Math. Scand. 109 (2011), no. 2, 225–239. https://doi.org/10.7146/math.scand.a-15186

Dykema, K., Paulsen, V., and Prakash, J., Non-closure of the set of quantum correlations via graphs, Comm. Math. Phys. 365 (2019), no. 3, 1125–1142. https://doi.org/10.1007/s00220-019-03301-1

Ji, Z., Natarajan, A., Vidick, T., Wright, J., and Yuen, H., MIP^*=RE, Preprint, arXiv:2001.04383. https://doi.org/10.48550/arXiv.2001.04383

Kirchberg, E., On nonsemisplit extensions, tensor products and exactness of group C-algebras, Invent. Math. 112 (1993), no. 3, 449–489. https://doi.org/10.1007/BF01232444

Kruglyak, S. A., Rabanovich, V. I., and Samou ılenko, Y. S., On sums of projections, Funktsional. Anal. i Prilozhen. 36 (2002), no. 3, 20–35, 96; translation in Funct. Anal. Appl. 36 (2002), no. 3, 182–195. https://doi.org/10.1023/A:1020193804109

Musat, M., and Rørdam, M., Non-closure of quantum correlation matrices and factorizable channels that require infinite dimensional ancilla, with an appendix by Narutaka Ozawa, Comm. Math. Phys. 375 (2020), no. 3, 1761–1776. https://doi.org/10.1007/s00220-019-03449-w

Russell, T. B. Two-outcome synchronous correlation sets and Connes' embedding problem, Quantum Inf. Comput. 20 (2020), no. 5–6, 361–374.

Published

2024-05-27

How to Cite

Mori, M. (2024). On the shape of correlation matrices for unitaries. MATHEMATICA SCANDINAVICA, 130(2). https://doi.org/10.7146/math.scand.a-142800

Issue

Section

Articles