The Kalton-Peck space as a spreading model
DOI:
https://doi.org/10.7146/math.scand.a-143424Abstract
The so-called Kalton-Peck space $Z_2$ is a twisted Hilbert space induced, using complex interpolation, by $c_0$ or $\ell _p$ for any $1\leq p\neq 2<\infty $. Kalton and Peck developed a scheme of results for $Z_2$ showing that it is a very rigid space. For example, every normalized basic sequence in $Z_2$ contains a subsequence which is equivalent to either the Hilbert copy $\ell _2$ or the Orlicz space $\ell _M$. Recently, new examples of twisted Hilbert spaces, which are induced by asymptotic $\ell _p$-spaces, have appeared on the stage. Thus, our aim is to extend the Kalton-Peck theory of $Z_2$ to twisted Hilbert spaces $Z(X)$ induced by asymptotic $c_0$ or $\ell _p$-spaces $X$ for $1\leq p<\infty $. One of the novelties is to use spreading models to gain information on the isomorphic structure of the subspaces of a twisted Hilbert space. As a sample of our results, the only spreading models of $Z(X)$ are $\ell _2$ and $\ell _M$, whenever $X$ is as above and $p\neq 2$.
References
Albiac, F., and Kalton, N. J., Topics in Banach space theory. Graduate Texts in Mathematics 233. Springer, New York, 2006.
Androulakis, G., Casazza, P. G., and Kutzarova, D. N., Some more weak Hilbert spaces, Canad. Math. Bull. 43 (2000), no. 3, 257–267. https://doi.org/10.4153/CMB-2000-033-0
Beauzamy, B., and Lapresté, J. T., Modèles étalés des espaces de Banach. Publ. Dép. Math. (Lyon) (N.S.) 1983, 4/A.
Benyamini, Y., and Lindenstrauss, J., Geometric nonlinear functional analysis Vol. 1. American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI, 2000. https://doi.org/10.1090/coll/048
Bergh, J., and Löfström, J., Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.
Brunel, A., and Sucheston, L., On B-convex Banach spaces, Math. Systems Theory 7 (1974), no. 4, 294–299. https://doi.org/10.1007/BF01795947
Casazza, P., and Shura, T. J., Tsirelson's space. With an appendix by J. Baker, O. Slotterbeck and R. Aron. Lecture Notes in Mathematics, 1363. Springer-Verlag, Berlin, 1989. https://doi.org/10.1007/BFb0085267
Carro, M. J., Cerdà, J., and Soria, J., Commutators and interpolation methods, Ark. Mat. 33 (1995), no. 2, 199–216. https://doi.org/10.1007/BF02559707
Castillo, J. M. F., Personal communication.
Castillo, J. M. F., Ferenczi, V., and González, M., Singular twisted sums generated by complex interpolation, Trans. Amer. Math. Soc. 369 (2017), no. 7, 4671–4708. https://doi.org/10.1090/tran/6809
Castillo, J. M. F., Morales, D., and Suárez de la Fuente, J., Derivation of vector-valued complex interpolation scales, J. Math. Anal. Appl. 468 (2018), no. 1, 461–472. https://doi.org/10.1016/j.jmaa.2018.08.028
Cobos, F., and Schonbek, T., On a theorem by Lions and Peetre about interpolation between a Banach space and its dual, Houston J. Math. 24 (1998), no. 2, 325–344.
Enflo, P., Lindenstrauss, J., and Pisier, G., On the “three space problem", Math. Scand. 36 (1975), no. 2, 199–210. https://doi.org/10.7146/math.scand.a-11571
Gowers, T., Gowers's Weblog, https://gowers.wordpress.com/ https://gowers.wordpress.com/
Halbeisen, L., and Odell, E., On asymptotic models in Banach spaces, Israel J. Math. 139 (2004), 253–291. https://doi.org/10.1007/BF02787552
Halmos, P. R., I want to be a mathematician. An automatography. Springer-Verlag, New York, 1985. https://doi.org/10.1007/978-1-4612-1084-9
bibitem ka3 Kalton, N. J., The three space problem for locally bounded F-spaces, Compositio Math. 37 (1978), no. 3, 243–276. http://www.numdam.org/item?id=CM_1978__37_3_243_0
bibitem ka Kalton, N. J., Differentials of complex interpolation processes for Köthe function spaces, Trans. Amer. Math. Soc. 333 (1992), no. 2, 479–529. https://doi.org/10.2307/2154047
bibitem KM Kalton, N. J., and Montgomery-Smith, S., Interpolation of Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2, 1131–1175, North-Holland, Amsterdam, 2003. https://doi.org/10.1016/S1874-5849(03)80033-5
Kalton, N. J., and Peck, N. T., Twisted sums of sequence spaces and the three-space problem, Trans. Amer. Math. Soc. 255 (1979), 1–30. https://doi.org/10.2307/1998164
Morales, D., and Suárez de la Fuente, J., Some more twisted Hilbert spaces, Ann. Fenn. Math. 46 (2021), no. 2, 819–837. https://doi.org/10.5186/aasfm.2021.4653
Pisier, G., Weak Hilbert spaces, Proc. London Math. Soc. (3) 56 (1988), no. 3, 547–579. https://doi.org/10.1112/plms/s3-56.3.547
Suárez de la Fuente, J., A space with no unconditional basis that satisfies the Johnson-Lindenstrauss lemma, Results Math. 74 (2019), no. 3, Paper No. 126, 14 pp. https://doi.org/10.1007/s00025-019-1047-2
Suárez de la Fuente, J., A weak Hilbert space that is a twisted Hilbert space, J. Inst. Math. Jussieu 19 (2020), no. 3, 855–867. https://doi.org/10.1017/s1474748018000221
Suárez de la Fuente, J., A universal formula for derivation maps and applications, Analysis Mathematica (to appear).
Watbled, F., Complex interpolation of a Banach space with its dual, Math. Scand. 87 (2000), no. 2, 200–210. https://doi.org/10.7146/math.scand.a-14305