Limiting absorption principle and radiation conditions for Schrödinger operators with long-range potentials

Authors

  • Martin Dam Larsen

DOI:

https://doi.org/10.7146/math.scand.a-143426

Abstract

We show Rellich's theorem, the limiting absorption principle, and a Sommerfeld uniqueness result for a wide class of one-body Schrödinger operators with long-range potentials, extending and refining previously known results. Our general method is based on elementary commutator estimates, largely following the scheme developed recently by Ito and Skibsted.

References

Adachi, T., Itakura, K., Ito, K., and Skibsted, E., New methods in spectral theory of $N$-body Schrödinger operators, Rev. Math. Phys. 33 (2021), no. 5, Paper no. 2150015 48 pp. https://doi.org/10.1142/S0129055X2150015X

Agmon, S., Lower bounds for solutions of Schrödinger equations, J. Analyse Math. 23 (1970), 1–25. https://doi.org/10.1007/BF02795485

Agmon, S., and Hörmander, L., Asymptotic properties of solutions of differential equations with simple characteristics, J. Analyse Math. 30 (1976), 1–38. https://doi.org/10.1007/BF02786703

Amrein, W. O., Boutet de Monvel, A., and Georgescu, V., (C_0)-groups, commutator methods and spectral theory of (N)-body Hamiltonians, Progress in Mathematics, 135. Birkhäuser Verlag, Basel, 1996. https://doi.org/10.1007/978-3-0348-7762-6

Enss, V., Asymptotic completeness for quantum mechanical potential scattering. I: Short range potentials, Comm. Math. Phys. 61 (1978), no. 3, 285–291. https://doi.org/10.1007/BF01940771

Froese, R., Herbst, I., Hoffmann-Ostenhof, M., and Hoffmann-Ostenhof, T., On the absence of positive eigenvalues for one-body Schrödinger operators, J. Analyse Math. 41 (1982), 272–284. https://doi.org/10.1007/BF02803406

Herbst, I., and Skibsted, E., Time-dependent approach to radiation conditions, Duke Math. J. 64 (1991), no. 1, 119–147. https://doi.org/10.1215/S0012-7094-91-06406-9

Hörmander, L., The analysis of linear partial differential operators. II, Classics in Mathematics, Springer-Verlag, Berlin, 2005, Reprint of the 1983 original. https://doi.org/10.1007/b138375

Hörmander, L., The analysis of linear partial differential operators. IV, Classics in Mathematics, Springer-Verlag, Berlin, 2009, Reprint of the 1994 edition. https://doi.org/10.1007/978-3-642-00136-9

Isozaki, H., Eikonal equations and spectral representations for long-range Schrödinger Hamiltonians, J. Math. Kyoto Univ. 20 (1980), no. 2, 243–261. https://doi.org/10.1215/kjm/1250522277

Ito, K., and Skibsted, E., Radiation condition bounds on manifolds with ends, J. Funct. Anal. 278 (2020), no. 9, Paper no. 108449, 47 pp. https://doi.org/10.1016/j.jfa.2019.108449

Ito, K., and Skibsted, E., Strong radiation condition bounds, arXiv:2205.14049.

Kato, T., Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math. 12 (1959), 403–425. https://doi.org/10.1002/cpa.3160120302

Lavine, R., Absolute continuity of positive spectrum for Schrödinger operators with long-range potentials, J. Funct. Anal. 12 (1973), 30–54. https://doi.org/10.1016/0022-1236(73)90088-8

Reed, M., and Simon, B., Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978.

Reed, M., and Simon, B., Methods of modern mathematical physics. III. Scattering theory, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.

Rellich, F., Über das asymptotische Verhalten der Lösungen von $Delta u+lambda u=0$ in unendlichen Gebieten, Jber. Deutsch. Math.-Verein. 53 (1943), 57–65.

Rodnianski, I., and Tao, T., Effective limiting absorption principles, and applications, Commun. Math. Phys. 333 (2015), no. 1, 1–95. https://doi.org/10.1007/s00220-014-2177-8

Rudin, W., Functional analysis, second ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.

Saitō, Y., Spectral representations for Schrödinger operators with long-range potentials, Lecture Notes in Mathematics, 727, Springer, Berlin, 1979.

Simon, B., On positive eigenvalues of one-body Schrödinger operators, Comm. Pure Appl. Math. 22 (1969), 531–538. https://doi.org/10.1002/cpa.3160220405

Vakulenko, A. F., On a variant of commutator estimates in spectral theory, J. Soviet Math. 49 (1990), no. 5, 1136–1139 https://doi.org/10.1007/BF02208709

Yafaev, D. R., Mathematical scattering theory: General theory, Translations of Mathematical Monographs, 105, American Mathematical Society, Providence, RI, 1992. https://doi.org/10.1090/mmono/105

Yafaev, D. R., Mathematical scattering theory: Analytic theory, Mathematical Surveys and Monographs, 158, American Mathematical Society, Providence, RI, 2010. https://doi.org/10.1090/surv/158

Published

2024-05-27

How to Cite

Larsen, M. D. (2024). Limiting absorption principle and radiation conditions for Schrödinger operators with long-range potentials. MATHEMATICA SCANDINAVICA, 130(2). https://doi.org/10.7146/math.scand.a-143426

Issue

Section

Articles