A new invariant of lattice polytopes

Authors

  • Winfried Bruns
  • Takayuki Hibi

DOI:

https://doi.org/10.7146/math.scand.a-143486

Abstract

The maximal degree of monomials belonging to the unique minimal system of monomial generators of the canonical module $\omega (K[\mathcal{P}])$ of the toric ring $K[\mathcal{P}]$ defined by a lattice polytope $\mathcal{P}$ will be studied. It is shown that if $\mathcal{P}$ possesses an interior lattice point, then the maximal degree is at most $\dim \mathcal{P} - 1$, and that this bound is the best possible in general.

References

Bruns, W., and Gubeladze, J., Polytopes, rings, and $K$-theory, Springer Monographs in Mathematics. Springer, Dordrecht, 2009. https://doi.org/10.1007/b105283

Bruns, W., Gubeladze, J., Trung, N. V., Normal polytopes, triangulations, and Koszul algebras, J. Reine Angew. Math. 485 (1997), 123–160.

Bruns, W., Ichim, B., Söger, C., and von der Ohe, U., Normaliz, Algorithms for rational cones and affine monoids. Available at https://www.normaliz.uni-osnabrueck.de.

Herzog, J., and Hibi, T., Discrete polymatroids, J. Algebraic Combin. 16 (2002), no. 3, 239–268 https://doi.org/10.1023/A:1021852421716

Hibi, T., Algebraic combinatorics on convex polytopes, Carslaw Publications, Glebe, N.S.W., Australia, 1992.

Published

2024-05-27

How to Cite

Bruns, W., & Hibi, T. (2024). A new invariant of lattice polytopes. MATHEMATICA SCANDINAVICA, 130(2). https://doi.org/10.7146/math.scand.a-143486

Issue

Section

Articles