Kähler Yamabe minimizers on minimal ruled surfaces
DOI:
https://doi.org/10.7146/math.scand.a-14369Abstract
It is shown that if a minimal ruled surface $\mathrm{P}(E) \rightarrow \Sigma$ admits a Kähler Yamabe minimizer, then this metric is generalized Kähler-Einstein and the holomorphic vector bundle $E$ is quasi-stable.Downloads
Published
2002-06-01
How to Cite
Tønnesen-Friedman, C. W. (2002). Kähler Yamabe minimizers on minimal ruled surfaces. MATHEMATICA SCANDINAVICA, 90(2), 180–190. https://doi.org/10.7146/math.scand.a-14369
Issue
Section
Articles