Symmetry in the vanishing of Ext over Gorenstein rings

Authors

  • Craig Huneke
  • David A. Jorgensen

DOI:

https://doi.org/10.7146/math.scand.a-14418

Abstract

We investigate symmetry in the vanishing of Ext for finitely generated modules over local Gorenstein rings. In particular, we define a class of local Gorenstein rings, which we call AB rings, and show that for finitely generated modules $M$ and $N$ over an AB ring $R$, $\mathrm{Ext}^i_R(M,N)=0$ for all $i\gg 0$ if and only if $\mathrm{Ext}^i_R(N,M)=0$ for all $i\gg 0$.

Downloads

Published

2003-12-01

How to Cite

Huneke, C., & Jorgensen, D. A. (2003). Symmetry in the vanishing of Ext over Gorenstein rings. MATHEMATICA SCANDINAVICA, 93(2), 161–184. https://doi.org/10.7146/math.scand.a-14418

Issue

Section

Articles