On the Borel cohomology of free loop spaces
DOI:
https://doi.org/10.7146/math.scand.a-14419Abstract
Let $X$ be a space and let $K = H^*(X; \boldsymbol F_p)$ where $p$ is an odd prime. We construct functors $\overline \Omega$ and $\ell$ which approximate cohomology of the free loop space $\Lambda X$ as follows: There are homomorphisms $\overline \Omega(K) \to H^*(\Lambda X; \boldsymbol F_p)$ and $\ell(K)\to H^*(E\boldsymbol T\times_T\Lambda X;\boldsymbol F_p)$. These are isomorphisms when $X$ is a product of Eilenberg-MacLane spaces of type $K(\boldsymbol F_p,n)$ for $n \geq 1$.Downloads
Published
2003-12-01
How to Cite
Ottesen, I. (2003). On the Borel cohomology of free loop spaces. MATHEMATICA SCANDINAVICA, 93(2), 185–220. https://doi.org/10.7146/math.scand.a-14419
Issue
Section
Articles