The discrepancy of some real sequences

Authors

  • H. Kamarul Haili
  • R. Nair

DOI:

https://doi.org/10.7146/math.scand.a-14423

Abstract

Let $(\lambda_n)_{n\geq 0}$ be a sequence of real numbers such that there exists $\delta > 0$ such that $|\lambda_{n+1} - \lambda_n| \geq \delta , n = 0,1,...$. For a real number $y$ let $\{ y \}$ denote its fractional part. Also, for the real number $x$ let $D(N,x)$ denote the discrepancy of the numbers $\{ \lambda _0 x \}, \cdots , \{ \lambda _{N-1} x \}$. We show that given $\varepsilon > 0$, 9774 D(N,x) = o ( N^{-\frac{1}{2}}(\log N)^{\frac{3}{2} + \varepsilon})9774 almost everywhere with respect to Lebesgue measure.

Downloads

Published

2003-12-01

How to Cite

Haili, H. K., & Nair, R. (2003). The discrepancy of some real sequences. MATHEMATICA SCANDINAVICA, 93(2), 268–274. https://doi.org/10.7146/math.scand.a-14423

Issue

Section

Articles