The tracial topological rank of extensions of $C^*$-algebras

Authors

  • Shanwen Hu
  • Huaxin Lin
  • Yifeng Xue

DOI:

https://doi.org/10.7146/math.scand.a-14433

Abstract

Let $0\to \mathcal J\to \mathcal A\to \mathcal A / \mathcal J\to 0$ be a short exact sequence of separable $C^*$-algebras. We introduce the notion of tracially quasidiagonal extension. Suppose that $\mathcal J$ and $\mathcal A/J$ have tracial topological rank zero. We prove that if $(\mathcal A, \mathcal J)$ is tracially quasidiagonal, then $\mathcal A$ has tracial topological rank zero.

Downloads

Published

2004-03-01

How to Cite

Hu, S., Lin, H., & Xue, Y. (2004). The tracial topological rank of extensions of $C^*$-algebras. MATHEMATICA SCANDINAVICA, 94(1), 125–147. https://doi.org/10.7146/math.scand.a-14433

Issue

Section

Articles