Unital positive Schur multipliers on Spn with a completely isometric dilation
DOI:
https://doi.org/10.7146/math.scand.a-146563Abstract
Let 1<p≠2<∞ and let Spn be the associated Schatten von Neumann class over n×n matrices. We prove new characterizations of unital positive Schur multipliers Spn→Spn which can be dilated into an invertible complete isometry acting on a non-commutative Lp-space. Then we investigate the infinite dimensional case.
References
Akcoglu, M. A., and Sucheston, L., Dilations of positive contractions on Lp spaces, Canad. Math. Bull. 20 (1977), no. 3, 285–292. https://doi.org/10.4153/CMB-1977-044-4
Arhancet, C., On Matsaev's conjecture for contractions on noncommutative Lp-spaces, J. Operator Theory 69 (2013), no. 2, 387–421. https://doi.org/10.7900/jot.2010dec29.1905
Duquet, C., and Le Merdy, C., A characterization of absolutely dilatable Schur multipliers, Adv. Math. 439 (2024), Paper No. 109492, 33 pp. https://doi.org/10.1016/j.aim.2024.109492
Haagerup, U., and Musat, M., Factorization and dilation problems for completely positive maps on von Neumann algebras, Comm. Math. Phys. 303 (2011), no. 2, 555–594. https://doi.org/10.1007/s00220-011-1216-y
Hiai, F., Lectures on selected topics in von Neumann algebras, EMS Series of Lectures in Mathematics, EMS Press, Berlin 2021. https://doi.org/10.4171/ELM/3
Junge, M., and Le Merdy, C., Dilations and rigid factorisations on noncommutative Lp-spaces, J. Funct. Anal. 249 (2007), no. 1, 220–252. https://doi.org/10.1016/j.jfa.2007.01.007
Junge, M., Ruan, Z.-J., and Sherman, D., A classification for 2-isometries of noncommutative Lp-spaces, Israel J. Math. 150 (2005), 285–314. https://doi.org/10.1007/BF02762384
Junge, M., and Xu, Q., Noncommutative maximal ergodic theorems, J. Amer. Math. Soc. 20 (2007), no. 2, 385–439. https://doi.org/10.1090/S0894-0347-06-00533-9
Le Merdy, C., and Zadeh, S., ell1-contractive maps on noncommutative Lp-spaces, J. Operator Theory 85 (2021), no. 2, 417–442. https://doi.org/10.7900/jot
Le Merdy, C., and Zadeh, S., On factorization of separating maps on noncommutative Lp-spaces, Indiana Univ. Math. J. 71 (2022), no. 5, 1967–2000.
Paulsen, V., Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics 78, Cambridge University Press, Cambridge, 2002.
Pisier, G., Tensor products of C∗-algebras and operator spaces—the Connes-Kirchberg problem, London Mathematical Society Student Texts, 96. Cambridge University Press, Cambridge 2020.
Pisier, G. and Xu, Q., Non-commutative Lp-spaces, Handbook of the geometry of Banach spaces, Vol. 2, 1459–1517, North-Holland, Amsterdam, 2003. https://doi.org/10.1016/S1874-5849(03)80041-4
Ray, S. K., On multivariate Matsaev's conjecture, Complex Anal. Oper. Theory 14 (2020), no. 4, Paper No. 42, 25. https://doi.org/10.1007/s11785-020-00999-z
Ricard, E., A Markov dilation for self-adjoint Schur multipliers, Proc. Amer. Math. Soc. 136 (2008), no. 12, 4365–4372. https://doi.org/10.1090/S0002-9939-08-09452-5
Takesaki, M., Theory of operator algebras, I. Reprint of the first (1979) edition. Encyclopaedia of Mathematical Sciences, 124. Operator Algebras and Non-commutative Geometry, 5. Springer-Verlag, Berlin, 2002.
Takesaki, M., Theory of operator algebras, III. Encyclopaedia of Mathematical Sciences, 127. Operator Algebras and Non-commutative Geometry, 8. Springer-Verlag, Berlin, 2003. https://doi.org/10.1007/978-3-662-10453-8