Unital positive Schur multipliers on $S_n^p$ with a completely isometric dilation

Authors

  • Charles Duquet

DOI:

https://doi.org/10.7146/math.scand.a-146563

Abstract

Let $1<p\neq 2<\infty $ and let $S^p_n$ be the associated Schatten von Neumann class over $n\times n$ matrices. We prove new characterizations of unital positive Schur multipliers $S^p_n\to S^p_n$ which can be dilated into an invertible complete isometry acting on a non-commutative $L^p$-space. Then we investigate the infinite dimensional case.

References

Akcoglu, M. A., and Sucheston, L., Dilations of positive contractions on $L_p$ spaces, Canad. Math. Bull. 20 (1977), no. 3, 285–292. https://doi.org/10.4153/CMB-1977-044-4

Arhancet, C., On Matsaev's conjecture for contractions on noncommutative $L^p$-spaces, J. Operator Theory 69 (2013), no. 2, 387–421. https://doi.org/10.7900/jot.2010dec29.1905

Duquet, C., and Le Merdy, C., A characterization of absolutely dilatable Schur multipliers, Adv. Math. 439 (2024), Paper No. 109492, 33 pp. https://doi.org/10.1016/j.aim.2024.109492

Haagerup, U., and Musat, M., Factorization and dilation problems for completely positive maps on von Neumann algebras, Comm. Math. Phys. 303 (2011), no. 2, 555–594. https://doi.org/10.1007/s00220-011-1216-y

Hiai, F., Lectures on selected topics in von Neumann algebras, EMS Series of Lectures in Mathematics, EMS Press, Berlin 2021. https://doi.org/10.4171/ELM/3

Junge, M., and Le Merdy, C., Dilations and rigid factorisations on noncommutative $L^p$-spaces, J. Funct. Anal. 249 (2007), no. 1, 220–252. https://doi.org/10.1016/j.jfa.2007.01.007

Junge, M., Ruan, Z.-J., and Sherman, D., A classification for $2$-isometries of noncommutative $L_p$-spaces, Israel J. Math. 150 (2005), 285–314. https://doi.org/10.1007/BF02762384

Junge, M., and Xu, Q., Noncommutative maximal ergodic theorems, J. Amer. Math. Soc. 20 (2007), no. 2, 385–439. https://doi.org/10.1090/S0894-0347-06-00533-9

Le Merdy, C., and Zadeh, S., $ell ^1$-contractive maps on noncommutative $L^p$-spaces, J. Operator Theory 85 (2021), no. 2, 417–442. https://doi.org/10.7900/jot

Le Merdy, C., and Zadeh, S., On factorization of separating maps on noncommutative $L^p$-spaces, Indiana Univ. Math. J. 71 (2022), no. 5, 1967–2000.

Paulsen, V., Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics 78, Cambridge University Press, Cambridge, 2002.

Pisier, G., Tensor products of $C^*$-algebras and operator spaces—the Connes-Kirchberg problem, London Mathematical Society Student Texts, 96. Cambridge University Press, Cambridge 2020.

Pisier, G. and Xu, Q., Non-commutative $L^p$-spaces, Handbook of the geometry of Banach spaces, Vol. 2, 1459–1517, North-Holland, Amsterdam, 2003. https://doi.org/10.1016/S1874-5849(03)80041-4

Ray, S. K., On multivariate Matsaev's conjecture, Complex Anal. Oper. Theory 14 (2020), no. 4, Paper No. 42, 25. https://doi.org/10.1007/s11785-020-00999-z

Ricard, E., A Markov dilation for self-adjoint Schur multipliers, Proc. Amer. Math. Soc. 136 (2008), no. 12, 4365–4372. https://doi.org/10.1090/S0002-9939-08-09452-5

Takesaki, M., Theory of operator algebras, I. Reprint of the first (1979) edition. Encyclopaedia of Mathematical Sciences, 124. Operator Algebras and Non-commutative Geometry, 5. Springer-Verlag, Berlin, 2002.

Takesaki, M., Theory of operator algebras, III. Encyclopaedia of Mathematical Sciences, 127. Operator Algebras and Non-commutative Geometry, 8. Springer-Verlag, Berlin, 2003. https://doi.org/10.1007/978-3-662-10453-8

Published

2024-11-04

How to Cite

Duquet, C. (2024). Unital positive Schur multipliers on $S_n^p$ with a completely isometric dilation. MATHEMATICA SCANDINAVICA, 130(3). https://doi.org/10.7146/math.scand.a-146563

Issue

Section

Articles