Power domination in generalized Mycielskian of spiders

Authors

  • K Sreethu
  • Seema Varghese

DOI:

https://doi.org/10.7146/math.scand.a-147931

Abstract

The power domination problem in the graph was introduced to model the monitoring problem in electric networks. It is to find a set of vertices with minimum cardinality, called a power dominating set (PDS), that monitors the whole set $ V $ after applying the rules, domination and propagation. In this paper, we discuss the power domination problem in generalized Mycielskian of spiders. We characterize spiders with $\gamma _P(\mu _m(T))= 1$. If $\gamma _P(\mu _m(T))\neq 1 $ and $ m $ is even then $ \gamma _P(\mu _m(T))=\frac {m}{2} +1$. We also show that if $ m $ is odd and $ \gamma _P(\mu _m(T))\neq 1 $, then $ \lceil \frac {m+1}{2}\rceil \leq \gamma _P(\mu _m(T))\leq \lceil \frac {m}{2}\rceil +1$.

References

Balakrishnan, R., and Francis Raj, S., Connectivity of the Mycielskian of a graph, Discrete Math. 308 (2008), no. 12, 2607–2610. https://doi.org/10.1016/j.disc.2007.05.004

Baldwin, T. L., Mili, L., Boisen, M. B., and Adapa, R., Power system observability with minimal phasor measurement placement, IEEE Trans. Power Syst. 8 (1993), no. 2, 707–715.

Barrera, R., and Ferrero, D., Power domination in cylinders, tori, and generalized Petersen graphs, Networks 58 (2011), no. 1, 43–49. https://doi.org/10.1002/net.20413

Dorbec, P., Mollard, M., Klavžar, S., and Špacapan, S., Power domination in product graphs, SIAM J. Discrete Math. 22 (2008), no. 2, 554–567. https://doi.org/10.1137/060661879

Dorfling, M., and Henning, M. A., A note on power domination in grid graphs, Discrete Appl. Math. 154 (2006), no. 6, 1023–1027. https://doi.org/10.1016/j.dam.2005.08.006

Ferrero, D., Varghese, S., and Vijayakumar, A., Power domination in honeycomb networks, J. Discrete Math. Sci. Cryptogr. 14 (2011), no. 6, 521–529. https://doi.org/10.1080/09720529.2011.10698353

Lin, W., Wu, J., Lam, P. C. B., and Gu, G., Several parameters of generalized Mycielskians, Discrete Appl. Math. 154 (2006), no. 8, 1173–1182. https://doi.org/10.1016/j.dam.2005.11.001

Haynes, T. W., Hedetniemi, S. M., Hedetniemi, S. T., and Henning, M. A., Domination in graphs applied to electric power networks, SIAM J. Discrete Math. 15 (2002), no. 4, 519–529. https://doi.org/10.1137/S0895480100375831

K, S., Varghese, S., and Varghese, S., Power domination in Mycielskians of $n$-spiders, AKCE Int. J. Graphs. Comb. (2023), to appear. https://doi.org/10.1080/09728600.2023.2296501

Mycielski, J., Sur le coloriage des graphs, Colloq. Math. 3 (1955), 161–162. https://doi.org/10.4064/cm-3-2-161-162

Savitha, K. S., Chithra, M. R., and Vijayakumar, A., Some diameter notions of the generalized Mycielskian of a graph, Theoretical computer science and discrete mathematics, 371–382, Lecture Notes in Comput. Sci., 10398, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-64419-6

Stephen, S., Rajan, B., Ryan, J., Grigorious, C., and William, A., Power domination in certain chemical structures, J. Discrete Algorithms 33 (2015), 10–18. https://doi.org/10.1016/j.jda.2014.12.003

Varghese, S., and Vijayakumar, A., Studies on some generalizations of line graph and the power domination problem in graphs, PhD thesis, (2011).

Varghese, S., Varghese, S., and Vijayakumar, A., Power domination in Mycielskian of spiders, AKCE Int. J. Graphs. Comb. 19 (2022), no. 2, 154–158. https://doi.org/10.1080/09728600.2022.2082900

Varghese, S., Vijayakumar, A., and Hinz, A. M., Power domination in Knödel graphs and Hanoi graphs, Discuss. Math. Graph Theory 38 (2018), no. 1, 63–74. https://doi.org/10.7151/dmgt.1993

Sreethu, K., Varghese, S., and Varghese, S., Power domination in Mycielskians of $n$-spiders, AKCE Int. J. Graphs. Comb. (2023), to appear. https://doi.org/10.1080/09728600.2023.2296501

West, D. B., Introduction to graph theory, ed. 2. Prentice Hall Upper Saddle River, (2001).

Xu, G., Kang, L., Shan, E., and Zhao, M., Power domination in block graphs, Theoret. Comput. Sci. 359 (2006), no. 1–3, 299–305. https://doi.org/10.1016/j.tcs.2006.04.011

Published

2024-11-04

How to Cite

Sreethu, K., & Varghese, S. (2024). Power domination in generalized Mycielskian of spiders. MATHEMATICA SCANDINAVICA, 130(3). https://doi.org/10.7146/math.scand.a-147931

Issue

Section

Articles