Rigid $\mathcal{OL}_p$structures of non-commutative $L_p$-spaces associated with hyperfinite von Neumann algebras

Authors

  • Marius Junge
  • Zhong-Jin Ruan
  • Quanhua Xu

DOI:

https://doi.org/10.7146/math.scand.a-14945

Abstract

This paper is devoted to the study of rigid local operator space structures on non-commutative $L_p$-spaces. We show that for $1\le p \neq 2 < \infty$, a non-commutative $L_p$-space $L_p(\mathcal M)$ is a rigid $\mathcal{OL}_p$ space (equivalently, a rigid $\mathcal{COL}_p$ space) if and only if it is a matrix orderly rigid $\mathcal{OL}_p$ space (equivalently, a matrix orderly rigid $\mathcal{COL}_p$ space). We also show that $L_p(\mathcal M)$ has these local properties if and only if the associated von Neumann algebra $\mathcal M$ is hyperfinite. Therefore, these local operator space properties on non-commutative $L_p$-spaces characterize hyperfinite von Neumann algebras.

Downloads

Published

2005-03-01

How to Cite

Junge, M., Ruan, Z.-J., & Xu, Q. (2005). Rigid $\mathcal{OL}_p$structures of non-commutative $L_p$-spaces associated with hyperfinite von Neumann algebras. MATHEMATICA SCANDINAVICA, 96(1), 63–95. https://doi.org/10.7146/math.scand.a-14945

Issue

Section

Articles