Unconditional bases in tensor products of Hilbert spaces

Authors

  • David Pérez-García
  • Ignacio Villanueva

DOI:

https://doi.org/10.7146/math.scand.a-14957

Abstract

We prove that a tensor norm $\alpha$ (defined on tensor products of Hilbert spaces) is the Hilbert-Schmidt norm if and only if $\ell_2\otimes\cdots\otimes \ell_2$, endowed with the norm $\alpha$, has an unconditional basis. This extends a classical result of Kwapień and Pełczyński. The symmetric version of that statement follows, and this extends a recent result of Defant, Díaz, García and Maestre.

Downloads

Published

2005-06-01

How to Cite

Pérez-García, D., & Villanueva, I. (2005). Unconditional bases in tensor products of Hilbert spaces. MATHEMATICA SCANDINAVICA, 96(2), 280–288. https://doi.org/10.7146/math.scand.a-14957

Issue

Section

Articles