Adjoints and canonical forms of tree amplituhedra

Authors

  • Kristian Ranestad
  • Rainer Sinn
  • Simon Telen

DOI:

https://doi.org/10.7146/math.scand.a-149816

Abstract

We consider semi-algebraic subsets of the Grassmannian of lines in three-space called tree amplituhedra. These arise in the study of scattering amplitudes from particle physics. Our main result states that tree amplituhedra in Gr(2,4) are positive geometries. The numerator of their canonical form plays the role of the adjoint in Wachspress geometry, and is uniquely determined by explicit interpolation conditions.

References

Arkani-Hamed, N., Bai, Y., and Lam, T., Positive geometries and canonical forms, J. High Energy Phys. 2017, no. 11, 039, front matter+121 pp. https://doi.org/10.1007/jhep11(2017)039

Arkani-Hamed, N., Hodges, A., and Trnka, J., Positive amplitudes in the amplituhedron, J. High Energy Phys. 2015, no. 8, 030, front matter+24 pp. https://doi.org/10.1007/JHEP08(2015)030

Arkani-Hamed, N., Thomas, H., and Trnka, J., Unwinding the amplituhedron in binary, J. High Energy Phys. 2018, no. 1, 016, front matter+40 pp. https://doi.org/10.1007/jhep01(2018)01

Arkani-Hamed, N., and Trnka, J., The amplituhedron, Journal of High Energy Physics 2014, no. 10, 030, front matter+30 pp. https://doi.org/10.1007/JHEP10(2014)030

Even-Zohar, C., Lakrec, T., Parisi, M., Tessler, R., Sherman-Bennett, M., and Williams, L., A cluster of results on amplituhedron tiles, Lett. Math. Phys. 114 (2024), no. 5, Paper No. 111. https://doi.org/10.1007/s11005-024-01854-4

Franco, S., Galloni, D., Mariotti, A., and Trnka, J., Anatomy of the amplituhedron, J. High Energy Phys. 2015, no. 3, 128, front matter+61 pp. https://doi.org/10.1007/JHEP03(2015)128

Fulton, W., Intersection theory, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, 1998. https://doi.org/10.1007/978-1-4612-1700-8

Gaetz, C., Positive geometries learning seminar, unpublished lecture notes, available at https://math.mit.edu/ tfylam/posgeom/gaetz_notes.pdf (2020).

Galashin, P., Karp, S. N., and Lam, T., The totally nonnegative Grassmannian is a ball, Adv. Math. 397 (2022), Paper No. 108123, 23 pp. https://doi.org/10.1016/j.aim.2021.108123

Kohn, K., Piene, R., Ranestad, K., Rydell, F., Shapiro, B., Sinn, R., Sorea, M.-S., and Telen, S., Adjoints and canonical forms of polypols, arXiv:2108.11747 (2021).

Kohn, K., and Ranestad, K., Projective geometry of Wachspress coordinates, Found. Comput. Math. 20 (2020), no. 5, 1135–1173. https://doi.org/10.1007/s10208-019-09441-z

Lam, T., An invitation to positive geometries, arXiv:2208.05407.

Łukowski, T., On the boundaries of the m=2 amplituhedron, Ann. Inst. Henri Poincaré D 9 (2022), no. 3, 525–541. https://doi.org/10.4171/aihpd/124

Łukowski, T., Parisi, M., and Williams, L. K., The positive tropical Grassmannian, the hypersimplex, and the m=2 amplituhedron, Int. Math. Res. Not. IMRN 2023, no. 19, 16778–16836. https://doi.org/10.1093/imrn/rnad010

Mandelshtam, Y., Pavlov, D., and Pratt, E., Combinatorics of m=1 grasstopes, arXiv:2307.09603.

Parisi, M., Sherman-Bennett, M., and Williams, L., The m=2 amplituhedron and the hypersimplex: Signs, clusters, tilings, Eulerian numbers, Commun. Am. Math. Soc. 3 (2023), 329–399. https://doi.org/10.1090/cams/23

Sinn, R., Algebraic boundaries of (mathrm SO(2))-orbitopes, Discrete Comput. Geom. 50 (2013), no. 1, 219–235. https://doi.org/10.1007/s00454-013-9501-5

Sturmfels, B., Totally positive matrices and cyclic polytopes, Linear Algebra Appl. 107 (1988), 275–281. https://doi.org/https://doi.org/10.1016/0024-3795(88)90250-9

Published

2024-11-04

How to Cite

Ranestad, K., Sinn, R., & Telen, S. (2024). Adjoints and canonical forms of tree amplituhedra. MATHEMATICA SCANDINAVICA, 130(3). https://doi.org/10.7146/math.scand.a-149816

Issue

Section

Articles