Approximation by invertible functions of $H^{\infty}$

Authors

  • Artur Nicolau
  • Daniel Suárez

DOI:

https://doi.org/10.7146/math.scand.a-15013

Abstract

We provide an analytic proof that if $H^\infty$ is the algebra of bounded analytic functions on the unit disk, $A$ is a Banach algebra and $f: H^\infty \rightarrow A$ is a Banach algebras morphism with dense image, then $f((H^\infty)^{-1})$ is dense in $A^{-1}$.

Downloads

Published

2006-12-01

How to Cite

Nicolau, A., & Suárez, D. (2006). Approximation by invertible functions of $H^{\infty}$. MATHEMATICA SCANDINAVICA, 99(2), 287–319. https://doi.org/10.7146/math.scand.a-15013

Issue

Section

Articles