The Daugavet property for spaces of Lipschitz functions

Authors

  • Yevgen Ivakhno
  • Vladimir Kadets
  • Dirk Werner

DOI:

https://doi.org/10.7146/math.scand.a-15044

Abstract

For a compact metric space $K$ the space $\mathrm{Lip}(K)$ has the Daugavet property if and only if the norm of every $f \in \mathrm{Lip}(K)$ is attained locally. If $K$ is a subset of an $L_p$-space, $1<p<\infty$, this is equivalent to the convexity of $K$.

Downloads

Published

2007-12-01

How to Cite

Ivakhno, Y., Kadets, V., & Werner, D. (2007). The Daugavet property for spaces of Lipschitz functions. MATHEMATICA SCANDINAVICA, 101(2), 261–279. https://doi.org/10.7146/math.scand.a-15044

Issue

Section

Articles