Hölder inequality for functions that are integrable with respect to bilinear maps

Authors

  • O. Blasco
  • J. M. Calabuig

DOI:

https://doi.org/10.7146/math.scand.a-15053

Abstract

Let $(\Omega, \Sigma, \mu)$ be a finite measure space, $1\le p<\infty$, $X$ be a Banach space $X$ and $B:X\times Y \to Z$ be a bounded bilinear map. We say that an $X$-valued function $f$ is $p$-integrable with respect to $B$ whenever $\sup_{\|y\|=1} \int_\Omega \|B(f(w),y)\|^p\,d\mu<\infty$. We get an analogue to Hölder's inequality in this setting.

Downloads

Published

2008-03-01

How to Cite

Blasco, O., & Calabuig, J. M. (2008). Hölder inequality for functions that are integrable with respect to bilinear maps. MATHEMATICA SCANDINAVICA, 102(1), 101–110. https://doi.org/10.7146/math.scand.a-15053

Issue

Section

Articles