On spectra and Brown's spectral measures of elements in free products of matrix algebras
DOI:
https://doi.org/10.7146/math.scand.a-15070Abstract
We compute spectra and Brown measures of some non self-adjoint operators in $(M_2(\mathsf {C}), \frac{1}{2}\mathrm{Tr})*(M_2(\mathsf{C}), \frac{1}{2}\mathrm{Tr})$, the reduced free product von Neumann algebra of $M_2(\mathsf {C})$ with $M_2(\mathsf {C})$. Examples include $AB$ and $A+B$, where $A$ and $B$ are matrices in $(M_2(\mathsf {C}), \frac{1}{2}\mathrm{Tr})*1$ and $1*(M_2(\mathsf {C}), \frac{1}{2}\mathrm{Tr})$, respectively. We prove that $AB$ is an R-diagonal operator (in the sense of Nica and Speicher [12]) if and only if $\mathrm{Tr}(A)=\mathrm{Tr}(B)=0$. We show that if $X=AB$ or $X=A+B$ and $A,B$ are not scalar matrices, then the Brown measure of $X$ is not concentrated on a single point. By a theorem of Haagerup and Schultz [9], we obtain that if $X=AB$ or $X=A+B$ and $X\neq \lambda 1$, then $X$ has a nontrivial hyperinvariant subspace affiliated with $(M_2(\mathsf{C}), \frac{1}{2}\mathrm{Tr})*(M_2(\mathsf{C}), \frac{1}{2}\mathrm{Tr})$.Downloads
Published
2008-09-01
How to Cite
Fang, J., Hadwin, D., & Ma, X. (2008). On spectra and Brown’s spectral measures of elements in free products of matrix algebras. MATHEMATICA SCANDINAVICA, 103(1), 77–96. https://doi.org/10.7146/math.scand.a-15070
Issue
Section
Articles