On Banach ideals satisfying $c_0(\mathcal{A}(X,Y))=\mathcal{A}(X,c_0(Y))$

Authors

  • J. M. Delgado
  • C. Piñeiro

DOI:

https://doi.org/10.7146/math.scand.a-15073

Abstract

We characterize Banach ideals $[\mathcal{A},a]$ satisfying the equality $c_0(\mathcal{A}(X,Y))= \mathcal{A}(X,c_0(Y))$ for all Banach spaces $X$ and $Y$. Among other results we have proved that $\mathcal{K}$ (the normed operator ideal of all compact operators with the operator norm) is the only injective Banach ideal satisfying the equality.

Downloads

Published

2008-09-01

How to Cite

Delgado, J. M., & Piñeiro, C. (2008). On Banach ideals satisfying $c_0(\mathcal{A}(X,Y))=\mathcal{A}(X,c_0(Y))$. MATHEMATICA SCANDINAVICA, 103(1), 130–140. https://doi.org/10.7146/math.scand.a-15073

Issue

Section

Articles