Approximately inner derivations

Authors

  • Ola Bratteli
  • Akitaka Kishimoto
  • Derek W. Robinson

DOI:

https://doi.org/10.7146/math.scand.a-15074

Abstract

Let $\alpha$ be an approximately inner flow on a $C^*$-algebra $A$ with generator $\delta$ and let $\delta_n$ denote the bounded generators of the approximating flows $\alpha^{(n)}$. We analyze the structure of the set 26739 \mathcal D=\bigl\{x\in D(\delta): \lim_{n\rightarrow\infty}\delta_n(x)=\delta(x)\bigr\} 26739 of pointwise convergence of the generators. In particular we examine the relationship of $\mathcal D$ and various cores related to spectral subspaces.

Downloads

Published

2008-09-01

How to Cite

Bratteli, O., Kishimoto, A., & Robinson, D. W. (2008). Approximately inner derivations. MATHEMATICA SCANDINAVICA, 103(1), 141–160. https://doi.org/10.7146/math.scand.a-15074

Issue

Section

Articles