Absolutely convergent Fourier series and generalized Zygmund classes of functions
DOI:
https://doi.org/10.7146/math.scand.a-15089Abstract
We investigate the order of magnitude of the modulus of smoothness of a function $f$ with absolutely convergent Fourier series. We give sufficient conditions in terms of the Fourier coefficients in order that $f$ belongs to one of the generalized Zygmund classes $(\mathrm{Zyg}(\alpha, L)$ and $(\mathrm{Zyg} (\alpha, 1/L)$, where $0\le \alpha\le 2$ and $L= L(x)$ is a positive, nondecreasing, slowly varying function and such that $L(x) \to \infty$ as $x\to \infty$. A continuous periodic function $f$ with period $2\pi$ is said to belong to the class $(\mathrm{Zyg} (\alpha, L)$ if 26740 |f(x+h) - 2f(x) + f(x-h)| \le C h^\alpha L\left(\frac{1}{h}\right)\qquad \text{for all $x\in \mathsf T$ and $h>0$}, 26740 where the constant $C$ does not depend on $x$ and $h$; and the class $(\mathrm{Zyg} (\alpha, 1/L)$ is defined analogously. The above sufficient conditions are also necessary in case the Fourier coefficients of $f$ are all nonnegative.Downloads
Published
2009-03-01
How to Cite
Móricz, F. (2009). Absolutely convergent Fourier series and generalized Zygmund classes of functions. MATHEMATICA SCANDINAVICA, 104(1), 124–131. https://doi.org/10.7146/math.scand.a-15089
Issue
Section
Articles