The Kadets $1/4$ theorem for polynomials

Authors

  • Jordi Marzo
  • Kristian Seip

DOI:

https://doi.org/10.7146/math.scand.a-15100

Abstract

We determine the maximal angular perturbation of the $(n+1)$th roots of unity permissible in the Marcinkiewicz-Zygmund theorem on $L^p$ means of polynomials of degree at most $n$. For $p=2$, the result is an analogue of the Kadets $1/4$ theorem on perturbation of Riesz bases of holomorphic exponentials.

Downloads

Published

2009-06-01

How to Cite

Marzo, J., & Seip, K. (2009). The Kadets $1/4$ theorem for polynomials. MATHEMATICA SCANDINAVICA, 104(2), 311–318. https://doi.org/10.7146/math.scand.a-15100

Issue

Section

Articles