Plane sets allowing bilipschitz extensions
DOI:
https://doi.org/10.7146/math.scand.a-15110Abstract
We give a geometric characterization for a plane set $A\subset {\mathsf R}^2$ to have the following linear bilipschitz extension property: For $0\le \varepsilon \le \delta$, every $(1 + \varepsilon)$-bilipschitz map $f\colon A\to {\mathsf R}^2$ has a $(1 + C\varepsilon)$-bilipschitz extension to the whole plane ${\mathsf R}^2$.Downloads
Published
2009-09-01
How to Cite
Alestalo, P., & Trotsenko, D. A. (2009). Plane sets allowing bilipschitz extensions. MATHEMATICA SCANDINAVICA, 105(1), 134–146. https://doi.org/10.7146/math.scand.a-15110
Issue
Section
Articles