Plane sets allowing bilipschitz extensions

Authors

  • P. Alestalo
  • D. A. Trotsenko

DOI:

https://doi.org/10.7146/math.scand.a-15110

Abstract

We give a geometric characterization for a plane set $A\subset {\mathsf R}^2$ to have the following linear bilipschitz extension property: For $0\le \varepsilon \le \delta$, every $(1 + \varepsilon)$-bilipschitz map $f\colon A\to {\mathsf R}^2$ has a $(1 + C\varepsilon)$-bilipschitz extension to the whole plane ${\mathsf R}^2$.

Downloads

Published

2009-09-01

How to Cite

Alestalo, P., & Trotsenko, D. A. (2009). Plane sets allowing bilipschitz extensions. MATHEMATICA SCANDINAVICA, 105(1), 134–146. https://doi.org/10.7146/math.scand.a-15110

Issue

Section

Articles