Biharmonic Green function of a ring domain

Authors

  • Tatyana S. Vaitekhovich

DOI:

https://doi.org/10.7146/math.scand.a-15137

Abstract

A biharmonic Green function of a circular ring domain $R=\{z\in \mathsf {C}: 0<r<|z|<1\}$ is found in the form 26741 \widehat{G}_{2}(z,\zeta)=|\zeta-z|^{2}G_{1}(z,\zeta)+\widehat{h}_{2}(z,\zeta), 26741 where $G_{1}(z,\zeta)$ is the harmonic Green function of the ring $R$, and $\widehat{h}_{2}(z,\zeta)$ is a specially constructed biharmonic function.

Downloads

Published

2010-06-01

How to Cite

Vaitekhovich, T. S. (2010). Biharmonic Green function of a ring domain. MATHEMATICA SCANDINAVICA, 106(2), 267–282. https://doi.org/10.7146/math.scand.a-15137

Issue

Section

Articles