A note on fractional integral operators defined by weights and non-doubling measures

Authors

  • Oscar Blasco
  • Vicente Casanova
  • Joaquín Motos

DOI:

https://doi.org/10.7146/math.scand.a-15138

Abstract

Given a metric measure space $(X,d,\mu)$, a weight $w$ defined on $(0,\infty)$ and a kernel $k_w(x,y)$ satisfying the standard fractional integral type estimates, we study the boundedness of the operators $K_w f(x)=\int_X k_w(x,y)f(y)\,d\mu(y)$ and $\tilde K_w f(x)=\int_X (k_w(x,y)-k_w(x_0,y))f(y)\,d\mu(y)$ on Lebesgue spaces $L^p(\mu)$ and generalized Lipschitz spaces $\mathrm{Lip}_\phi$, respectively, for certain range of the parameters depending on the $n$-dimension of $\mu$ and some indices associated to the weight $w$.

Downloads

Published

2010-06-01

How to Cite

Blasco, O., Casanova, V., & Motos, J. (2010). A note on fractional integral operators defined by weights and non-doubling measures. MATHEMATICA SCANDINAVICA, 106(2), 283–300. https://doi.org/10.7146/math.scand.a-15138

Issue

Section

Articles