Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces

Authors

  • Vagif S. Guliyev
  • Javanshir J. Hasanov
  • Stefan G. Samko

DOI:

https://doi.org/10.7146/math.scand.a-15156

Abstract

We consider generalized Morrey spaces ${\mathcal M}^{p(\cdot),\omega}(\Omega)$ with variable exponent $p(x)$ and a general function $\omega (x,r)$ defining the Morrey-type norm. In case of bounded sets $\Omega \subset {\mathsf R}^n$ we prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel, in such spaces. We also prove a Sobolev-Adams type ${\mathcal M}^{p(\cdot),\omega} (\Omega)\rightarrow {\mathcal M}^{q(\cdot),\omega} (\Omega)$-theorem for the potential operators $I^{\alpha(\cdot)}$, also of variable order. The conditions for the boundedness are given it terms of Zygmund-type integral inequalities on $\omega(x,r)$, which do not assume any assumption on monotonicity of $\omega(x,r)$ in $r$.

Downloads

Published

2010-12-01

How to Cite

Guliyev, V. S., Hasanov, J. J., & Samko, S. G. (2010). Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces. MATHEMATICA SCANDINAVICA, 107(2), 285–304. https://doi.org/10.7146/math.scand.a-15156

Issue

Section

Articles