On the Krull dimension of cofinite local cohomology modules

Authors

  • Kamal Bahmanpour

DOI:

https://doi.org/10.7146/math.scand.a-151573

Abstract

Let a be an ideal of a Noetherian ring R such that the category of a-cofinite modules is an Abelian subcategory of the category of R-modules. Let M be a finitely generated R-module such that the R-modules Hia(M) are a-cofinite for all integers iN0. In this paper it is shown that dimHia(M)1 for all integers i2.

References

Bahmanpour, K., Cohomological dimension, cofiniteness and Abelian categories of cofinite modules, J. Algebra, 484 (2017), 168–197. https://doi.org/10.1016/j.jalgebra.2017.04.019

Bahmanpour, K., On a question of Hartshorne, Collect. Math. 72 (2021), no. 3, 527–568. https://doi.org/10.1007/s13348-020-00298-y

Bahmanpour, K., On the first and second problems of Hartshorne on cofiniteness, Commun. Algebra, 52 (2024), no. 10, 4342-4367. https://doi.org/10.1080/00927872.2024.2346300

Brodmann. M. P., and Sharp, R. Y., Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, 60. Cambridge University Press, Cambridge, 1998. https://doi.org/10.1017/CBO9780511629204

Chiriacescu, G., Cofiniteness of local cohomology modules over regular local rings, Bull. London Math. Soc. 32 (2000), no. 1, 1–7. https://doi.org/10.1112/S0024609399006499

Delfino, D., On the cofiniteness of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 1, 79–84. https://doi.org/10.1017/S0305004100071929

Delfino, D., and Marley, T., Cofinite modules and local cohomology, J. Pure Appl. Algebra, 121 (1997), no. 1, 45–52. https://doi.org/10.1016/S0022-4049(96)00044-8

Divaani-Aazar, K., Naghipour, R., and Tousi, M., Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc. 130 (2002), no. 12, 3537–3544. https://doi.org/10.1090/S0002-9939-02-06500-0

Grothendieck, A., Local cohomology, Notes by R. Hartshorne, Lecture Notes in Math. 862 (Springer, New York, 1966).

Hartshorne, R., Affine duality and cofiniteness, Invent. Math. 9 (1969/70), 145–164. https://doi.org/10.1007/BF01404554

Huneke, C., and Koh, J., Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 421–429. https://doi.org/10.1017/S0305004100070493

Kawasaki, K.-I., Cofiniteness of local cohomology modules for principal ideals, Bull. London Math. Soc. 30 (1998), no. 3, 241–246. https://doi.org/10.1112/S0024609397004347

Marley, T., and Vassilev, J. C., Cofiniteness and associated primes of local cohomology modules, J. Algebra, 256 (2002), no. 1, 180–193. https://doi.org/10.1016/S0021-8693(02)00151-5

Matsumura, H., Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1986.

Melkersson, L., Modules cofinite with respect to an ideal, J. Algebra, 285 (2005), no. 2, 649–668. https://doi.org/10.1016/j.jalgebra.2004.08.037

Yoshida, K. I., Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997), 179–191. https://doi.org/10.1017/S0027763000006371

Published

2025-03-25

How to Cite

Bahmanpour, K. (2025). On the Krull dimension of cofinite local cohomology modules. MATHEMATICA SCANDINAVICA, 131(1). https://doi.org/10.7146/math.scand.a-151573

Issue

Section

Articles