On the Krull dimension of cofinite local cohomology modules
DOI:
https://doi.org/10.7146/math.scand.a-151573Abstract
Let a be an ideal of a Noetherian ring R such that the category of a-cofinite modules is an Abelian subcategory of the category of R-modules. Let M be a finitely generated R-module such that the R-modules Hia(M) are a-cofinite for all integers i∈N0. In this paper it is shown that dimHia(M)≤1 for all integers i≥2.
References
Bahmanpour, K., Cohomological dimension, cofiniteness and Abelian categories of cofinite modules, J. Algebra, 484 (2017), 168–197. https://doi.org/10.1016/j.jalgebra.2017.04.019
Bahmanpour, K., On a question of Hartshorne, Collect. Math. 72 (2021), no. 3, 527–568. https://doi.org/10.1007/s13348-020-00298-y
Bahmanpour, K., On the first and second problems of Hartshorne on cofiniteness, Commun. Algebra, 52 (2024), no. 10, 4342-4367. https://doi.org/10.1080/00927872.2024.2346300
Brodmann. M. P., and Sharp, R. Y., Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, 60. Cambridge University Press, Cambridge, 1998. https://doi.org/10.1017/CBO9780511629204
Chiriacescu, G., Cofiniteness of local cohomology modules over regular local rings, Bull. London Math. Soc. 32 (2000), no. 1, 1–7. https://doi.org/10.1112/S0024609399006499
Delfino, D., On the cofiniteness of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 1, 79–84. https://doi.org/10.1017/S0305004100071929
Delfino, D., and Marley, T., Cofinite modules and local cohomology, J. Pure Appl. Algebra, 121 (1997), no. 1, 45–52. https://doi.org/10.1016/S0022-4049(96)00044-8
Divaani-Aazar, K., Naghipour, R., and Tousi, M., Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc. 130 (2002), no. 12, 3537–3544. https://doi.org/10.1090/S0002-9939-02-06500-0
Grothendieck, A., Local cohomology, Notes by R. Hartshorne, Lecture Notes in Math. 862 (Springer, New York, 1966).
Hartshorne, R., Affine duality and cofiniteness, Invent. Math. 9 (1969/70), 145–164. https://doi.org/10.1007/BF01404554
Huneke, C., and Koh, J., Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 421–429. https://doi.org/10.1017/S0305004100070493
Kawasaki, K.-I., Cofiniteness of local cohomology modules for principal ideals, Bull. London Math. Soc. 30 (1998), no. 3, 241–246. https://doi.org/10.1112/S0024609397004347
Marley, T., and Vassilev, J. C., Cofiniteness and associated primes of local cohomology modules, J. Algebra, 256 (2002), no. 1, 180–193. https://doi.org/10.1016/S0021-8693(02)00151-5
Matsumura, H., Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1986.
Melkersson, L., Modules cofinite with respect to an ideal, J. Algebra, 285 (2005), no. 2, 649–668. https://doi.org/10.1016/j.jalgebra.2004.08.037
Yoshida, K. I., Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997), 179–191. https://doi.org/10.1017/S0027763000006371