Poincaré Series of some Hypergraph Algebras

Authors

  • E. Emtander
  • R. Fröberg
  • F. Mohammadi
  • S. Moradi

DOI:

https://doi.org/10.7146/math.scand.a-15229

Abstract

A hypergraph $H=(V,E)$, where $V=\{x_1,\ldots,x_n\}$ and $E\subseteq 2^V$ defines a hypergraph algebra $R_H=k[x_1,\ldots, x_n]/(x_{i_1}\cdots x_{i_k}; \{i_1,\ldots,i_k\}\in E)$. All our hypergraphs are $d$-uniform, i.e., $|e_i|=d$ for all $e_i\in E$. We determine the Poincaré series $P_{R_H}(t)=\sum_{i=1}^\infty\dim_k\mathrm{Tor}_i^{R_H}(k,k)t^i$ for some hypergraphs generalizing lines, cycles, and stars. We finish by calculating the graded Betti numbers and the Poincaré series of the graph algebra of the wheel graph.

Downloads

Published

2013-03-01

How to Cite

Emtander, E., Fröberg, R., Mohammadi, F., & Moradi, S. (2013). Poincaré Series of some Hypergraph Algebras. MATHEMATICA SCANDINAVICA, 112(1), 5–10. https://doi.org/10.7146/math.scand.a-15229

Issue

Section

Articles