Poincaré Series of some Hypergraph Algebras
DOI:
https://doi.org/10.7146/math.scand.a-15229Abstract
A hypergraph H=(V,E), where V={x1,…,xn} and E⊆2V defines a hypergraph algebra RH=k[x1,…,xn]/(xi1⋯xik;{i1,…,ik}∈E). All our hypergraphs are d-uniform, i.e., |ei|=d for all ei∈E. We determine the Poincaré series PRH(t)=∑∞i=1dimkTorRHi(k,k)ti for some hypergraphs generalizing lines, cycles, and stars. We finish by calculating the graded Betti numbers and the Poincaré series of the graph algebra of the wheel graph.Downloads
Published
2013-03-01
How to Cite
Emtander, E., Fröberg, R., Mohammadi, F., & Moradi, S. (2013). Poincaré Series of some Hypergraph Algebras. MATHEMATICA SCANDINAVICA, 112(1), 5–10. https://doi.org/10.7146/math.scand.a-15229
Issue
Section
Articles