Square Functions for Ritt Operators on Noncommutative Lp-Spaces
DOI:
https://doi.org/10.7146/math.scand.a-15573Abstract
For any Ritt operator T acting on a noncommutative Lp-space, we define the notion of completely bounded functional calculus H∞(Bγ) where Bγ is a Stolz domain. Moreover, we introduce the 'column square functions' ‖ and the 'row square functions' \|x\|_{p,T,r,\alpha}=\Bigl\|\Bigl(\sum_{k=1}^{+\infty}k^{2\alpha-1} |(T^{k-1}(I-T)^{\alpha}(x))^*|^2\Bigr)^{\frac{1}{2}}\Bigr\|_{L^p(M)} for any \alpha>0 and any x\in L^p(M). Then, we provide an example of Ritt operator which admits a completely bounded H^\infty(B_\gamma) functional calculus for some \gamma \in \mathopen{\big]}0,\frac{\pi}{2}\mathclose{\big[} such that the square functions \|{\cdot}\|_{p,T,c,\alpha} (or \|{\cdot}\|_{p,T,r,\alpha}) are not equivalent to the usual norm \|{\cdot}\|_{L^p(M)}. Moreover, assuming 1<p<2 and \alpha>0, we prove that if \mathop{\rm Ran}\nolimits (I-T) is dense and T admits a completely bounded H^\infty(B_\gamma) functional calculus for some \gamma \in \mathopen{\big]}0,\frac{\pi}{2}\mathclose{\big[} then there exists a positive constant C such that for any x \in L^p(M), there exists x_1, x_2 \in L^p(M) satisfying x=x_1+x_2 and \|x_1\|_{p,T,c,\alpha}+\|x_2\|_{p,T,r,\alpha}\leqslant C \|x\|_{L^p(M)}. Finally, we observe that this result applies to a suitable class of selfadjoint Markov maps on noncommutative L^p-spaces.Downloads
Published
2013-12-01
How to Cite
Arhancet, C. (2013). Square Functions for Ritt Operators on Noncommutative L^p-Spaces. MATHEMATICA SCANDINAVICA, 113(2), 292–319. https://doi.org/10.7146/math.scand.a-15573
Issue
Section
Articles